Skip to main content

Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy “click” systems

Abstract

The shape-memory response (SMR) of “click” thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures (\(T_{\mathrm{prog}}\)) and isothermal-recovery temperatures (\(T_{\mathrm{iso}}\)) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of \(T_{\mathrm{iso}}\): a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to \(T_{\mathrm{g}}\). The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time (\(t_{\mathrm{sr}}\)) is significantly reduced when the isothermal-recovery temperature \(T_{\mathrm{iso}}\) increases from below to above \(T_{\mathrm{g}}\) because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by \(T_{\mathrm{iso}}\); at higher \(T_{\mathrm{iso}}\) it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at \(T_{\mathrm{iso}} < T_{\mathrm{g}}\) to maximize the effect of the structure and/or by increasing \(T_{\mathrm{iso}}\) to minimize the effect but increasing the shape-recovery rate.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Arrieta, J.S., Diani, J., Gilormini, P.: Cyclic and monotonic testing of free and constrained recovery properties of a chemically crosslinked acrylate. J. Appl. Polym. Sci. 131, 39813–39820 (2014a)

    Article  Google Scholar 

  2. Arrieta, S., Diani, J., Gilormini, P.: Experimental characterization and thermoviscoelastic modeling of strain and stress recoveries of an amorphous polymer network. Mech. Mater. 68, 95–103 (2014b)

    Article  Google Scholar 

  3. Belmonte, A., Guzmán, D., Fernández-Francos, X., De la Flor, S.: Effect of the network structure and programming temperature on the shape-memory response of thiol-epoxy “click” systems. Polymers 7, 2146–2164 (2015)

    Article  Google Scholar 

  4. Berg, G.J., McBride, M.K., Wang, C., Bowman, C.N.: New directions in the chemistry of shape memory polymers. Polymer 55, 1–24 (2014)

    Article  Google Scholar 

  5. Binder, W.H., Sachsenhofer, R.: “Click” chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15–54 (2007)

    Article  Google Scholar 

  6. Brändle, A., Khan, A.: Thiol–epoxy “click” polymerization: efficient construction of reactive and functional polymers. Polym. Chem. 3, 3224 (2012)

    Article  Google Scholar 

  7. Carlborg, C.F., Vastesson, A., Liu, Y., Van Der Wijngaart, W., Johansson, M., Haraldsson, T.: Functional off-stoichiometry thiol-ene-epoxy thermosets featuring temporally controlled curing stages via an UV/UV dual cure process. J. Polym. Sci., Part A, Polym. Chem. 52, 2604–2615 (2014)

    Article  Google Scholar 

  8. Chen, X., Nguyen, T.D.: Influence of thermoviscoelastic properties and loading conditions on the recovery performance of shape memory polymers. Mech. Mater. 43, 127–138 (2011)

    Article  Google Scholar 

  9. Diani, J., Gilormini, P., Frédy, C., Rousseau, I.: Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 49, 793–799 (2012)

    Article  Google Scholar 

  10. Fan, M., Yu, H., Li, X., Cheng, J., Zhang, J.: Thermomechanical and shape-memory properties of epoxy-based shape-memory polymer using diglycidyl ether of ethoxylated bisphenol-A. Smart Mater. Struct. 22, 055034 (2013)

    Article  Google Scholar 

  11. Feldkamp, D.M., Rousseau, I.A.: Effect of the deformation temperature on the shape-memory behavior of epoxy networks. Macromol. Mater. Eng. 295, 726–734 (2010)

    Article  Google Scholar 

  12. Feldkamp, D.M., Rousseau, I.A.: Effect of chemical composition on the deformability of shape-memory epoxies. Macromol. Mater. Eng. 296, 1128–1141 (2011)

    Article  Google Scholar 

  13. Flores, M., Tomuta, A.M., Fernández-Francos, X., Ramis, X., Sangermano, M., Serra, A.: A new two-stage curing system: thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer 54, 5473–5481 (2013)

    Article  Google Scholar 

  14. Ge, Q., Yu, K., Ding, Y., Jerry Qi, H.: Prediction of temperature-dependent free recovery behaviors of amorphous shape memory polymers. Soft Matter 8, 11098 (2012)

    Article  Google Scholar 

  15. Guzmán, D., Ramis, X., Fernández-Francos, X., Serra, A.: New catalysts for diglycidyl ether of bisphenol a curing based on thiol-epoxy click reaction. Eur. Polym. J. 59, 377–386 (2014)

    Article  Google Scholar 

  16. Hager, M.D., Bode, S., Weber, C., Schubert, U.S.: Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015)

    Article  Google Scholar 

  17. Jin, K., Heath, W.H., Torkelson, J.M.: Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: effects of catalysis and functionality. Polymer 81, 70–78 (2015)

    Article  Google Scholar 

  18. Lakhera, N., Yakacki, C.M., Nguyen, T.D., Frick, C.P.: Partially constrained recovery of (meth)acrylate shape-memory polymer networks. J. Appl. Polym. Sci. 126, 72–82 (2012)

    Article  Google Scholar 

  19. Lendlein, A., Sauter, T.: Shape-memory effect in polymers. Macromol. Chem. Phys. 214, 1175–1177 (2013)

    Article  Google Scholar 

  20. Leng, J., Yu, K., Sun, J., Liu, Y.: Deployable morphing structure based on shape memory polymer. Aircr. Eng. Aerosp. Technol. 87, 218–223 (2015)

    Article  Google Scholar 

  21. Leonardi, A.B., Fasce, L.A., Zucchi, I.A., Hoppe, C.E., Soulé, E.R., Pérez, C.J., Williams, R.J.J.: Shape memory epoxies based on networks with chemical and physical crosslinks. Eur. Polym. J. 47, 362–369 (2011)

    Article  Google Scholar 

  22. Liu, Y., Han, C., Tan, H., Du, X.: Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A. 527, 2510–2514 (2010)

    Article  Google Scholar 

  23. Loureiro, R.M., Amarelo, T.C., Abuin, S.P., Soulé, E.R., Williams, R.J.J.: Kinetics of the epoxy–thiol click reaction initiated by a tertiary amine: calorimetric study using monofunctional components. Thermochim. Acta 616, 79–86 (2015)

    Article  Google Scholar 

  24. Pandini, S., Bignotti, F., Baldi, F., Passera, S.: Network architecture and shape memory behavior of cold-worked epoxies. J. Intell. Mater. Syst. Struct. 24, 1583–1597 (2013)

    Article  Google Scholar 

  25. Pascault, J.-P., Sautereau, H., J, V., R, W.J.J.: Thermosetting Polymers. CRC Press, Boca Raton (2002)

    Book  Google Scholar 

  26. Rousseau, I.A., Xie, T.: Relationship between materials properties and shape memory behavior in epoxy-amine polymers. In: Materials Research Society Symposium Proceedings, pp. 31–36 (2009)

    Google Scholar 

  27. Rousseau, I.A.: Challenges of shape memory polymers: a review of the progress toward overcoming SMP’s limitations. Polym. Eng. Sci. 48, 2075–2089 (2008)

    Article  Google Scholar 

  28. Santhosh Kumar, K.S., Biju, R., Reghunadhan Nair, C.P.: Progress in shape memory epoxy resins. React. Funct. Polym. 73, 421–430 (2013)

    Article  Google Scholar 

  29. Santiago, D., Fabregat-Sanjuan, A., Ferrando, F., De la Flor, S.: Recovery stress and work output in hyperbranched poly(ethyleneimine)-modified shape-memory epoxy polymers. J. Polym. Sci., Part B, Polym. Phys. 54(10), 1002–1013 (2016)

    Article  Google Scholar 

  30. Santiago, D., Fernández-Francos, X., Ferrando, F., De la Flor, S.: Shape-memory effect in hyperbranched poly(ethyleneimine)-modified epoxy thermosets. J. Polym. Sci., B, Polym. Phys. 53(13), 924–933 (2015)

    Article  Google Scholar 

  31. Scalet, G., Auricchio, F., Bonetti, E., Castellani, L., Ferri, D., Pachera, M., Scavello, F.: An experimental, theoretical and numerical investigation of shape memory polymers. Int. J. Plast. 67, 127–147 (2015)

    Article  Google Scholar 

  32. Song, J.J., Chang, H.H., Naguib, H.E.: Biocompatible shape memory polymer actuators with high force capabilities. Eur. Polym. J. 67, 186–198 (2015)

    Article  Google Scholar 

  33. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Article  Google Scholar 

  34. Tandon, G.P., Gibson, T., Shumaker, J., Coomer, R., Baur, J., Justice, R.S.: Processing and characterization of novel bismaleimide-based shape memory polymer composites. In: ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2012, vol. 1, pp. 19–25 (2012)

    Google Scholar 

  35. Tandon, G.P., McClung, A.J., Bauer, J.W.: Shape-Memory Polymers for Aerospace Applications. DEStech Publications (2016)

  36. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  37. Yakacki, C.M., Shandas, R., Lanning, C., Rech, B., Eckstein, A., Gall, K.: Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28, 2255–2263 (2007)

    Article  Google Scholar 

  38. Yakacki, C.M., Shandas, R., Safranski, D., Ortega, A.M., Sassaman, K., Gall, K.: Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008a)

    Article  Google Scholar 

  39. Yakacki, C.M., Willis, S., Luders, C., Gall, K.: Deformation limits in shape-memory polymers. Adv. Eng. Mater. 10, 112–119 (2008b)

    Article  Google Scholar 

  40. Zhao, Q., Qi, H.J., Xie, T.: Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 1–42 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank MICINN (MAT2014-53706-C03-01 and MAT2014-53706-C03-02) and Generalitat de Catalunya (2014-SGR-67) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia De la Flor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belmonte, A., Fernández-Francos, X., De la Flor, S. et al. Network structure dependence on unconstrained isothermal-recovery processes for shape-memory thiol-epoxy “click” systems. Mech Time-Depend Mater 21, 133–149 (2017). https://doi.org/10.1007/s11043-016-9322-z

Download citation

Keywords

  • Thiol-epoxy
  • Shape-memory polymer
  • Isothermal-recovery
  • Click chemistry