Skip to main content

Thermoviscoelastic models for polyethylene thin films

Abstract

This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally, against data obtained from uniaxial tension tests and biaxial cylindrical tests at a wide range of temperatures and strain rates spanning two orders of magnitude.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Smith, I.M.: The NASA balloon program: looking to the future. Adv. Space Res. 33, 1588–1593 (2004)

    Article  Google Scholar 

  2. Smith, I.M., Rainwater, E.: Optimum designs for superpressure balloons. Adv. Space Res. 33, 1688–1693 (2004)

    Article  Google Scholar 

  3. Schapery, R.A.: An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solids Struct. 2, 407–425 (1966)

    Article  Google Scholar 

  4. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969)

    Article  Google Scholar 

  5. Schapery, R.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209–240 (1997)

    Article  Google Scholar 

  6. Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)

    Article  Google Scholar 

  7. Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  Google Scholar 

  8. Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39, 39–52 (2006)

    Article  Google Scholar 

  9. Caruthers, J.M., Adolf, D.B., Chambers, R.S., Shrikhande, P.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45, 4577–4597 (2004)

    Article  Google Scholar 

  10. Wineman, A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rand, J., Henderson, J., Grant, D.: Nonlinear behavior of linear low-density polyethylene. Polym. Eng. Sci. 36, 1058–1064 (1996)

    Article  Google Scholar 

  12. Rand, J., Sterling, W.: A constitutive equation for stratospheric balloon materials. Adv. Space Res. 37, 2087–2091 (2006)

    Article  Google Scholar 

  13. Rand, J., Wakefield, D.: Studies of thin film nonlinear viscoelasticity for superpressure balloons. Adv. Space Res. 45, 56–60 (2010)

    Article  Google Scholar 

  14. Gerngross, T., Xu, Y., Pellegrino, S.: Viscoelastic behavior of pumpkin balloons. Adv. Space Res. 42, 1683–1690 (2008)

    Article  Google Scholar 

  15. Knauss, W., Emri, I.: Nonlinear viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128 (1981)

    Article  MATH  Google Scholar 

  16. Kwok, K., Pellegrino, S.: Large strain viscoelastic model for balloon film. In: 11th AIAA Balloon Systems Conference, Virginia Beach, VA (2011)

    Google Scholar 

  17. Lakes, R.S.: Viscoelastic Solids. CRC Press, Boca Raton (1999)

    Google Scholar 

  18. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, New York (2008)

    Book  Google Scholar 

  19. Knauss, W., Emri, I.: Volume change and the nonlinearly thermo-viscoelastic constitution of polymers. Polym. Eng. Sci. 27, 86–100 (1987)

    Article  Google Scholar 

  20. Losi, G., Knauss, W.: Free volume theory and nonlinear thermoviscoelasticity. Polym. Eng. Sci. 32, 542–557 (1992)

    Article  Google Scholar 

  21. Doolittle, A.: Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Mech. 22, 1471–1475 (1951)

    Google Scholar 

  22. Popelar, C., Liechti, K.: Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive. J. Eng. Mater. Technol. 119, 205–210 (1997)

    Article  Google Scholar 

  23. Popelar, C., Liechti, K.: A distortion-modified free volume theory for nonlinear viscoelastic behavior. Mech. Time-Depend. Mater. 7, 89–141 (2003)

    Article  Google Scholar 

  24. Schwarzl, F.R., Struik, L.C.E.: Analysis of relaxation measurements. Adv. Mol. Relax. Process. 1(3), 201–255 (1968)

    Article  Google Scholar 

  25. Capodagli, J., Lakes, R.: Isothermal viscoelastic properties of pmma and ldpe over 11 decades of frequency and time: a test of time-temperature superposition. Rheol. Acta 47, 777–786 (2008)

    Article  Google Scholar 

  26. Caruthers, J.M., Cohen, R.E.: Consequences of thermorheological complexity in viscoelastic materials. Rheol. Acta 19, 606–613 (1980)

    Article  Google Scholar 

  27. Young, L.: CTE curve fitting data. NASA balloon program office report (2010)

  28. Vic-3D, Correlated Solutions Inc. (2010)

  29. Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009)

    Google Scholar 

  30. Williams, M., Landel, R., Ferry, J.: The temperature dependence of relaxation mechanisms of amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  31. Park, S.W., Kim, Y.R.: Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 13, 26–32 (2001)

    Article  Google Scholar 

  32. Schapery, R.A.: Viscoelastic behavior and analysis of composite materials. In: Mechanics of Composite Materials (A 75-24868 10-39), pp. 85–168. Academic Press, New York (1974)

    Google Scholar 

  33. Lai, J., Bakker, A.: 3-d Schapery representation for nonlinear viscoelasticity and finite element implementation. Comput. Mech. 18, 182–191 (1996)

    Article  MATH  Google Scholar 

  34. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11, 1–18 (2003)

    Article  Google Scholar 

  35. Hansen, N.: The CMA Evolutionary Strategy. Downloaded from https://www.lri.fr/~hansen/cmaesintro.html (2012)

Download references

Acknowledgements

We thank Drs. Wolfgang Knauss (California Institute of Technology), James Rand (Winzen Engineering), and David Wakefield (Tensys Limited) for helpful comments and discussions. We thank Dr. He of NASA GSFC for providing DMA test data on StratoFilm, Dr. W.N. Warner of NASA Jet Propulsion Laboratory for assistance in measuring the out-of-plane CTE of StratoFilm, and Dr. L. Young of NASA Wallops for providing test data. This research was supported by the NASA Balloon Program Office. Financial support from the Croucher Foundation (Hong Kong) for Kawai Kwok is also gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergio Pellegrino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Kwok, K. & Pellegrino, S. Thermoviscoelastic models for polyethylene thin films. Mech Time-Depend Mater 20, 13–43 (2016). https://doi.org/10.1007/s11043-015-9282-8

Download citation

Keywords

  • Nonlinear viscoelasticity
  • Free volume model
  • Polymer thin film