Mechanics of Time-Dependent Materials

, Volume 20, Issue 1, pp 13–43 | Cite as

Thermoviscoelastic models for polyethylene thin films

Article

Abstract

This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally, against data obtained from uniaxial tension tests and biaxial cylindrical tests at a wide range of temperatures and strain rates spanning two orders of magnitude.

Keywords

Nonlinear viscoelasticity Free volume model Polymer thin film 

References

  1. Smith, I.M.: The NASA balloon program: looking to the future. Adv. Space Res. 33, 1588–1593 (2004) CrossRefGoogle Scholar
  2. Smith, I.M., Rainwater, E.: Optimum designs for superpressure balloons. Adv. Space Res. 33, 1688–1693 (2004) CrossRefGoogle Scholar
  3. Schapery, R.A.: An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solids Struct. 2, 407–425 (1966) CrossRefGoogle Scholar
  4. Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9, 295–310 (1969) CrossRefGoogle Scholar
  5. Schapery, R.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 1, 209–240 (1997) CrossRefGoogle Scholar
  6. Boyce, M.C., Parks, D.M., Argon, A.S.: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988) CrossRefGoogle Scholar
  7. Bergstrom, J.S., Boyce, M.C.: Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998) CrossRefGoogle Scholar
  8. Dupaix, R.B., Boyce, M.C.: Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition. Mech. Mater. 39, 39–52 (2006) CrossRefGoogle Scholar
  9. Caruthers, J.M., Adolf, D.B., Chambers, R.S., Shrikhande, P.: A thermodynamically consistent, nonlinear viscoelastic approach for modeling glassy polymers. Polymer 45, 4577–4597 (2004) CrossRefGoogle Scholar
  10. Wineman, A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14, 300–366 (2009) CrossRefMathSciNetMATHGoogle Scholar
  11. Rand, J., Henderson, J., Grant, D.: Nonlinear behavior of linear low-density polyethylene. Polym. Eng. Sci. 36, 1058–1064 (1996) CrossRefGoogle Scholar
  12. Rand, J., Sterling, W.: A constitutive equation for stratospheric balloon materials. Adv. Space Res. 37, 2087–2091 (2006) CrossRefGoogle Scholar
  13. Rand, J., Wakefield, D.: Studies of thin film nonlinear viscoelasticity for superpressure balloons. Adv. Space Res. 45, 56–60 (2010) CrossRefGoogle Scholar
  14. Gerngross, T., Xu, Y., Pellegrino, S.: Viscoelastic behavior of pumpkin balloons. Adv. Space Res. 42, 1683–1690 (2008) CrossRefGoogle Scholar
  15. Knauss, W., Emri, I.: Nonlinear viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128 (1981) CrossRefMATHGoogle Scholar
  16. Kwok, K., Pellegrino, S.: Large strain viscoelastic model for balloon film. In: 11th AIAA Balloon Systems Conference, Virginia Beach, VA (2011) Google Scholar
  17. Lakes, R.S.: Viscoelastic Solids. CRC Press, Boca Raton (1999) Google Scholar
  18. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction. Springer, New York (2008) CrossRefGoogle Scholar
  19. Knauss, W., Emri, I.: Volume change and the nonlinearly thermo-viscoelastic constitution of polymers. Polym. Eng. Sci. 27, 86–100 (1987) CrossRefGoogle Scholar
  20. Losi, G., Knauss, W.: Free volume theory and nonlinear thermoviscoelasticity. Polym. Eng. Sci. 32, 542–557 (1992) CrossRefGoogle Scholar
  21. Doolittle, A.: Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J. Appl. Mech. 22, 1471–1475 (1951) Google Scholar
  22. Popelar, C., Liechti, K.: Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive. J. Eng. Mater. Technol. 119, 205–210 (1997) CrossRefGoogle Scholar
  23. Popelar, C., Liechti, K.: A distortion-modified free volume theory for nonlinear viscoelastic behavior. Mech. Time-Depend. Mater. 7, 89–141 (2003) CrossRefGoogle Scholar
  24. Schwarzl, F.R., Struik, L.C.E.: Analysis of relaxation measurements. Adv. Mol. Relax. Process. 1(3), 201–255 (1968) CrossRefGoogle Scholar
  25. Capodagli, J., Lakes, R.: Isothermal viscoelastic properties of pmma and ldpe over 11 decades of frequency and time: a test of time-temperature superposition. Rheol. Acta 47, 777–786 (2008) CrossRefGoogle Scholar
  26. Caruthers, J.M., Cohen, R.E.: Consequences of thermorheological complexity in viscoelastic materials. Rheol. Acta 19, 606–613 (1980) CrossRefGoogle Scholar
  27. Young, L.: CTE curve fitting data. NASA balloon program office report (2010) Google Scholar
  28. Vic-3D, Correlated Solutions Inc. (2010) Google Scholar
  29. Sutton, M.A., Orteu, J.J., Schreier, H.W.: Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer, Berlin (2009) Google Scholar
  30. Williams, M., Landel, R., Ferry, J.: The temperature dependence of relaxation mechanisms of amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955) CrossRefGoogle Scholar
  31. Park, S.W., Kim, Y.R.: Fitting Prony-series viscoelastic models with power-law presmoothing. J. Mater. Civ. Eng. 13, 26–32 (2001) CrossRefGoogle Scholar
  32. Schapery, R.A.: Viscoelastic behavior and analysis of composite materials. In: Mechanics of Composite Materials (A 75-24868 10-39), pp. 85–168. Academic Press, New York (1974) Google Scholar
  33. Lai, J., Bakker, A.: 3-d Schapery representation for nonlinear viscoelasticity and finite element implementation. Comput. Mech. 18, 182–191 (1996) CrossRefMATHGoogle Scholar
  34. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11, 1–18 (2003) CrossRefGoogle Scholar
  35. Hansen, N.: The CMA Evolutionary Strategy. Downloaded from https://www.lri.fr/~hansen/cmaesintro.html (2012)

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Graduate Aerospace LaboratoriesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Dassault Systemes Simulia Corp.JohnstonUSA
  3. 3.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark

Personalised recommendations