Skip to main content

An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

Abstract

The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time–temperature superposition shift factor (a T ) is expressed by the Williams–Landel–Ferry (WLF) model near and above the glass transition temperature (T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Argyris, J., St Doltsinis, I., da Silva, V.D.: Constitutive modelling and computation of non-linear viscoelastic solids. Part I: Rheological methods and numerical integration techniques. Comput. Methods Appl. Mech. Eng. 88, 135–163 (1991)

    Article  MATH  Google Scholar 

  • Azra, C., Plummer, C.J.G., Månson, J.-A.E.: Isothermal recovery rates in shape memory polyurethanes. Smart Mater. Struct. 20, 082002 (2011) (10 pp.)

    Article  Google Scholar 

  • Azra, C., Plummer, C.J.G., Månson, J.-A.E.: Tailoring the time-dependent recovery of shape memory polymers. Proc. SPIE 8342, 834212 (2012) (9 pp.)

    Article  Google Scholar 

  • Azra, C., Plummer, C.J.G., Månson, J.-A.E.: Dynamic mechanical analysis for rapid assessment of the time-dependent recovery behavior of shape memory polymers. Smart Mater. Struct. 22, 075037 (2013) (10 pp.)

    Article  Google Scholar 

  • Barot, G., Rao, I.J., Rajagopal, K.R.: A thermodynamic framework for the modeling of crystallizable shape memory polymers. Int. J. Eng. Sci. 46, 325–351 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Behl, M., Lendlein, A.: Shape memory polymers. Mater. Today 10, 20–28 (2007)

    Article  Google Scholar 

  • Bhattacharyya, A., Tobushi, H.: Analysis of the isothermal mechanical response of a shape memory polymer rheological model. Polym. Eng. Sci. 40, 2498–2510 (2000)

    Article  Google Scholar 

  • Chen, Y.C., Lagoudas, D.C.: A constitutive theory for shape memory polymers. Part I—Large deformations. J. Mech. Phys. Solids 56, 1752–1765 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Chen, J., Liu, L., Liu, Y., Leng, J.: Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer. Smart Mater. Struct. 23, 055025 (2014) (14 pp.)

    Article  Google Scholar 

  • Di Marzio, E.A., Yang, A.J.M.: Configurational entropy approach to the kinetics of glasses. J. Res. Natl. Inst. Stand. Technol. 102, 135–157 (1997)

    Article  Google Scholar 

  • Fejős, M., Romhány, G., Karger-Kocsis, J.: Shape memory characteristics of woven glass fibre fabric reinforced epoxy composite in flexture. J. Reinf. Plast. Compos. 31, 1532–1537 (2012)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York, Boston (1970)

    Google Scholar 

  • Gall, K., Yakacki, C.M., Liu, Y., Shandas, R., Willett, N., Anseth, K.S.: Thermomechanics of the shape memory effect in polymers for biomedical applications. J. Biomed. Mater. Res., Part A 73, 339–348 (2005)

    Article  Google Scholar 

  • Ge, Q., Luo, X., Rodriguez, E.D., Zhang, X., Mather, P.T., Dunn M.L., Qi, H.J.: Thermomechanical behavior of shape memory elastomeric composites. J. Mech. Phys. Solids 60, 67–83 (2012)

    Article  Google Scholar 

  • Havriliak, S., Negami, S.: A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967)

    Article  Google Scholar 

  • Lendlein, A., Kelch, S.: Shape memory polymers. Angew. Chem. Int. Ed. 41, 2035–2057 (2002)

    Google Scholar 

  • Liu, Y.J., Du, H.Y., Liu, L.W., Leng, J.S.: Shape memory polymer composites and their applications in aerospace: a review. Smart Mater. Struct. 23, 023001 (2014) (22 pp.)

    Article  Google Scholar 

  • Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • O’Connell, P.A., McKenna, G.B.: Arrhenius-like temperature dependence of the segmental relaxation below T g . J. Chem. Phys. 110, 11054–11060 (1999)

    Article  Google Scholar 

  • Ratna, D., Karger Kocsis, J.: Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254–269 (2008)

    Article  Google Scholar 

  • Qi, H.J., Nguyen, T.D., Castro, F., Yakacki, C.M., Shandas, R.: Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J. Mech. Phys. Solids 56, 1730–1751 (2008)

    Article  MATH  Google Scholar 

  • Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Article  Google Scholar 

  • Tobushi, H., Hashimoto, T., Ito, N.: Shape fixity and shape recovery in a film of shape memory polymer of polyurethane series. J. Intell. Mater. Syst. Struct. 9, 127–136 (1998)

    Article  Google Scholar 

  • Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y., Qi, H.J.: A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes. Mech. Mater. 43, 853–869 (2011)

    Article  Google Scholar 

  • Williams, M.L., Landel, R.F., Ferry, J.D.: Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  • Yu, K., Ge, Q., Qi, H.J.: Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat. Commun. 5, 3066 (2014a) (9 pp.)

    Google Scholar 

  • Yu, K., McClung, A.J.W., Tandon, G.P., Baur, J.W., Qi, H.J.: A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech. Time-Depend. Mater. 18, 453–474 (2014b)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the grant TÁMOP-4.2.2.A-11/1/KONV-2012-0036 supported by the European Union and co-funded by the European Social Fund. This work was also supported by the European Union and the State of Hungary, co-financed by the European Social Fund, in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 ‘National Excellence Program’ (S. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Kéki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuki, Á., Czifrák, K., Karger-Kocsis, J. et al. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data. Mech Time-Depend Mater 19, 87–93 (2015). https://doi.org/10.1007/s11043-014-9253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-014-9253-5

Keywords

  • Shape memory polymer (SMP)
  • Dynamic mechanical analysis (DMA)
  • Shift factor
  • Free recovery curve