Skip to main content
Log in

Relevance of a mesoscopic modeling for the coupling between creep and damage in concrete

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In its service-life concrete is loaded and delayed strains appear due to creep phenomenon. Some theories suggest that micro-cracks nucleate and grow when concrete is submitted to a high sustained loading, thereby contributing to the weakening of concrete. Thus, it is important to understand the interaction between the viscoelastic deformation and damage in order to design reliable civil engineering structures. Several creep-damage theoretical models have been proposed in the literature. However, most of these models are based on empirical relations applied at the macroscopic scale. Coupling between creep and damage is mostly realized by adding some parameters to take into account the microstructure effects. In the authors’ opinion, the microstructure effects can be modeled by taking into account the effective interactions between the concrete matrix and the inclusions. In this paper, a viscoelastic model is combined with an isotropic damage model. The material volume is modeled by a Digital Concrete Model which takes into account the “real” aggregate size distribution of concrete. The results show that stresses are induced by strain incompatibilities between the matrix and aggregates at mesoscale under creep and lead to cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Altoubat, S.A., Lange, D.A.: A new look at tensile creep of fiber reinforced concrete. In: Banthia, N. (ed.) ACI Special Publication on Fiber Reinforced Concrete (2003)

    Google Scholar 

  • Barpi, F., Valente, S.: A fractional order rate approach for modeling concrete structures subjected to creep and fracture. Int. J. Solids Struct. 41, 2607–2621 (2004)

    Article  MATH  Google Scholar 

  • Barpi, F., Valente, S.: Lifetime evaluation of concrete structures under sustained post-peak loading. Eng. Fract. Mech. 72(16), 2427–2443 (2005)

    Article  Google Scholar 

  • Bazant, Z.P.: Creep and damage in concrete. In: Svalny, J., Mindess, S. (eds.) Materials Science of Concrete, pp. 355–389. American Ceramic Society, Westerville (1995)

    Google Scholar 

  • Bazant, Z.P., Ozbolt, J.: Nonlocal microplane model for fracture, damage, and size effect in structures. J. Eng. Mech. 116, 2485–2505 (1990)

    Article  Google Scholar 

  • Bazant, Z.P., Li, Y.: Cohesive crack with rate-dependent opening and viscoelasticity: I. Mathematical model and scaling. Int. J. Fract. 86, 247–265 (1997)

    Article  Google Scholar 

  • Benboudjema, F., Torrenti, J.M.: Early age behavior of concrete nuclear containments. Nucl. Eng. Des. 238, 2495–2506 (2008)

    Article  Google Scholar 

  • Berthollet, A.: Contribution à la modélisation du béton vis-à-vis du vieillissement et de la durabilité: interaction des déformations de fluage et du comportement non-linéaire du matériau. PhD thesis of the Institut National des Sciences Appliquées de Lyon (2003)

  • Bissonnette, B., Pigeon, M.: Tensile creep at early ages of ordinary, silica fume and fiber reinforced concretes. Cem. Concr. Res. 25(5), 1075–1085 (1995)

    Article  Google Scholar 

  • Bissonnette, B., Pigeon, M., Vaysburd, A.: Tensile creep of concrete: study of its sensitivity to basic parameters. ACI Mater. J. 104(4), 360–368 (2007)

    Google Scholar 

  • Brooks, J.J., Neville, A.M.: A comparison of creep, elasticity and strength of concrete in tension and in compression. Mag. Concr. Res. 29(100), 131–141 (1977)

    Article  Google Scholar 

  • Carpinteri, A., Valenten, S., Zhou, F.P., Ferrara, G., Melchiorri, G.: Tensile and flexural creep rupture tests on partially-damaged concrete specimens. Mater. Struct. 30, 269–276 (1997)

    Article  Google Scholar 

  • Challamel, N., Lanos, C., Casandjian, C.: Creep damage modeling for quasi-brittle materials. Eur. J. Mech. A, Solids 24, 593–613 (2005)

    Article  MATH  Google Scholar 

  • Cook, D.J., Haque, M.N.: The tensile creep and fracture of desiccated concrete and mortar on water sorption. Mater. Struct. 7(3), 191–196 (1974)

    Google Scholar 

  • Denarié, E., Cécot, C., Huet, C.: Characterization of creep and crack growth interactions into fracture behavior of concrete. Cem. Concr. Res. 36(3), 571–575 (2006)

    Article  Google Scholar 

  • Dupray, F., Malecot, Y., Daudeville, L., Buzaud, E.: A mesoscopic model for the behavior of concrete under high confinement. Int. J. Numer. Anal. Methods 33, 1407–1423 (2009)

    Article  MATH  Google Scholar 

  • Fichant, S., Pijaudier-Cabot, G., La Borderie, C.: Continuum damage modeling: approximation of crack induced anisotropy. Mech. Res. Commun. 24(2), 109–114 (1997)

    Article  MATH  Google Scholar 

  • Fichant, S., La Borderie, C., Pijaudier-Cabot, G.: Isotropic and anisotropic descriptions of damage in concrete structures. Mech. Cohes.-Frict. Mater. 4(4), 339–359 (1999)

    Article  Google Scholar 

  • Garas, V.Y.: Multi-scale investigation of tensile creep of ultra-high performance concrete for bridge applications. Ph.D. Thesis, Georgia Institute of Technology (2009)

  • Granger, L.: Comportement différé du béton dans les enceintes de centrales nucléaires analyse et modélisation. Ph.D. Thesis, Laboratoire Central des Ponts et Chaussées, Paris (1996)

  • Granger, S., Loukili, A., Pijaudier-Cabot, G., Chanvillard, G.: Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: mechanical tests and acoustic emission analysis. Cem. Concr. Res. 37, 519–527 (2007)

    Article  Google Scholar 

  • Grassl, P., Jirasek, M.: Meso-scale approach to modeling the fracture process zone of concrete subjected to uniaxial tension. Int. J. Solids Struct. 47, 957–968 (2010)

    Article  MATH  Google Scholar 

  • Grondin, F., Dumontet, H., Ben Hamida, A., Mounajed, G., Boussa, H.: Multi-scales modeling for the behavior of damaged concrete. Cem. Concr. Res. 37, 1453–1462 (2007)

    Article  Google Scholar 

  • Grondin, F., Dumontet, H., Ben Hamida, A., Boussa, H.: Micromechanical contributions to the behavior of cement-based materials: two-scale modeling of cement paste and concrete in tension at high temperatures. Cem. Concr. Compos. 33(3), 424–435 (2011)

    Article  Google Scholar 

  • Haidar, K., Pijaudier-Cabot, G., Dubé, J.F., Loukili, A.: Correlation between the internal length, the fracture process zone and size effect in model materials. Mater. Struct. 38, 201–210 (2005)

    Google Scholar 

  • Le, Q.V., Meftah, F., He, Q.-C., Le Pape, Y.: Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori–Tanaka homogenization scheme and a discrete microscopic retardation spectrum. Mech. Time-Depend. Mater. 11, 309–331 (2007)

    Article  Google Scholar 

  • Lopez, C.M., Carol, I., Aguado, A.: Meso-structural study of concrete fracture using interface elements. I: Numerical model and tensile behavior. Mater. Struct. 41, 583–599 (2008)

    Article  Google Scholar 

  • Matallah, M., La Borderie, C., Maurel, O.: A practical method to estimate crack openings in concrete structures. Int. J. Numer. Anal. Methods 34, 1615–1633 (2010)

    MATH  Google Scholar 

  • Mazzotti, C., Savoia, M.: Non linear creep damage model for concrete under uniaxial compression. J. Eng. Mech. 129(9), 1065–1076 (2003)

    Article  Google Scholar 

  • Mihashi, H., Nomura, N.: Correlation between characteristics of fracture process zone and tension-softening properties of concrete. Nucl. Eng. Des. 65, 359–376 (1996)

    Article  Google Scholar 

  • Mounajed, G.: Exploitation du nouveau modèle Béton Numérique dans Symphonie: Concept, homogénéisation du comportement thermomécanique des BHP et simulation de l’endommagement thermique. Cahiers du CSTB No 3421 (2002)

  • Nguyen, T.D., Lawrence, C., La Borderie, C., Matallah, M., Nahas, G.: A mesoscopic model for a better understanding of the transition from diffuse damage to localized damage. Eur. J. Environ. Civ. Eng. 14(6–7), 751–776 (2011)

    Google Scholar 

  • Omar, M.: Déformations différées du béton: Etude expérimentale et modélisation numérique de l’interaction fluage – endommagement. PHD thesis, Ecole Centrale de Nantes (2004)

  • Omar, M., Loukili, A., Pijaudier-Cabot, G., Le Pape, Y.: Creep-damage coupled effects: experimental investigation on bending beams with various sizes. J. Mater. Civ. Eng. 21(2) (2009)

  • Otsuka, K., Date, H.: Fracture process zone in concrete tension specimen. Eng. Fract. Mech. 65, 111–131 (2000)

    Article  Google Scholar 

  • Ozbolt, J.: Sustained loading strength of concrete modeled by creep-cracking interaction. Otto Graf J. 12 (2001)

  • Reviron, N., Benboudjema, F., Torrenti, J.-M., Nahas, G., Millard, A.: Coupling between creep and cracking in tension. In: The Sixth Int. Conf. in Frac. Mech. of Concr. and Concr. Struct. (Framcos-6), Catania, Italy, June 17–22 (2007)

    Google Scholar 

  • RILEM TC212-ACD: Acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete. Mater. Struct. 43, 1177–1181 (2010)

    Article  Google Scholar 

  • Rossi, P., Godart, N., Robert, J.L., Gervais, J.P., Bruhat, D.: Investigation of the basic creep of concrete by acoustic emission. Mater. Struct. 27, 510–514 (1994)

    Article  Google Scholar 

  • Rossi, P., Tailhan, J.-L., Le Maou, F., Gaillet, L., Martin, E.: Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem. Concr. Res. 42, 61–73 (2012)

    Article  Google Scholar 

  • Ruiz, M.F., Muttoni, A., Gambarova, P.G.: Relationship between nonlinear creep and cracking of concrete under uniaxial compression. J. Adv. Concr. Technol. 5(3), 1–11 (2007)

    Google Scholar 

  • Saliba, J., Grondin, F., Loukili, A.: Coupling creep and damage in concrete under high sustained loading. In: The Seventh Int. Conf. in Frac. Mech. of Concr. and Concr. Struct. (Framcos-7), Jeju, Korea, May 23–28 (2010)

    Google Scholar 

  • Saliba, J., Loukili, A., Grondin, F.: Study of creep-damage coupling in concrete by acoustic emission technique. Mater. Struct. 45(9), 1389–1401 (2012)

    Article  Google Scholar 

  • Saliba, J.: Contribution of the acoustic emission technique in the understanding and the modeling of the coupling between creep and damage in concrete. Ph.D. Thesis at Ecole Centrale de Nantes (in French) (2012)

  • Torrenti, J.M., Nguyen, V.H., Colina, H., Le Maou, F., Benboudjema, F., Deleruyelle, F.: Coupling between leaching and creep of concrete. Cem. Concr. Res. 38, 816–821 (2008)

    Article  Google Scholar 

  • Verpaux, P., Charras, T., Millard, A.: Une approche moderne du calcul des structures. In: Fouet, J., Ladevèze, P., Ohayon, R. (eds.) Calculs des Structures et Intelligence Artificielle. Pluralis, Paris (1988)

    Google Scholar 

  • Zhu, W.C., Tang, C.A.: Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model. Constr. Build. Mater. 16, 453–463 (2002)

    Article  Google Scholar 

  • Zhu, W.C., Zhao, X.D., Kang, Y.M., Wei, C.H., Tian, J.: Numerical simulation on the acoustic emission activities of concrete. Mater. Struct. 43, 633–650 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

The experimental part of this study has been performed in the project MEFISTO which is supported by the French National Research Agency (ANR—Agence Nationale pour la Recherche) in the program “Villes Durables” (Sustainable Cities) under grant number VD08_323065. And the modeling part of this study is supported by the Scientific and Technical Centre for Building (CSTB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Grondin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saliba, J., Grondin, F., Matallah, M. et al. Relevance of a mesoscopic modeling for the coupling between creep and damage in concrete. Mech Time-Depend Mater 17, 481–499 (2013). https://doi.org/10.1007/s11043-012-9199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9199-4

Keywords

Navigation