Skip to main content
Log in

Influence of cold rolling degree and ageing treatments on the precipitation hardening of 2024 and 7075 alloys

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In the present work, the precipitation hardening of 2024 and 7075 aluminum alloys is investigated as a function of cold rolling degree, ageing time and temperature using Vickers microhardness measurements and differential scanning calorimetry (DSC). It is found that a variation in such parameters can improve the hardness and plays an important role in the precipitation hardening process. At specific ageing temperature, the large cold rolled 7075 alloy exhibits two peaks of hardness. Moreover, for both alloys, the increment of hardness during ageing decreases with increasing the cold rolling degree. While in some cases microhardness measurements give impression that the precipitation reaction is slowed down by deformation, DSC analysis indicates that the precipitation is much accelerated since only a slight deformation decreases strongly the temperatures of reactions. However, the degree of cold rolling does not play a crucial role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Charaï, A., Walther, T., Alfonso, C., Zahra, A.M., Zahra, C.Y.: Co-existence of clusters, GPB zones, S″-, S′- and S-phases in an Al–0.9%Cu–1.4%Mg alloy. Acta Mater. 48, 2751–2764 (2000)

    Article  Google Scholar 

  • Colombo, S., Battaini, P., Airoldi, G.: Precipitation kinetics in Ag–7.5 wt.% Cu alloy studied by isothermal DSC and electrical-resistance measurements. J. Alloys Compd. 437, 107–112 (2007)

    Article  Google Scholar 

  • Cuisiat, F., Duval, P., Graf, R.: Etude des premiers stades de decomposition d’un alliage Al–Cu–Mg. Scr. Metall. 18, 1051–1056 (1984)

    Article  Google Scholar 

  • Deiasi, R., Adler, P.N.: Calorimetric studies of 7000 series aluminum alloys: I. Matrix precipitate characterization of 7075. Metall. Trans. A 8A, 1177–1183 (1977)

    Google Scholar 

  • Develay, R.: Traitements thermiques des alliages d’aluminium. M1 290, pp. 13–26, Technique de l’Ingénieur (1995)

  • El-Baradie, Z.M., El-Sayed, M.: Effect of thermomechanical treatments on the properties of 7075 Al alloy. J. Mater. Process. Technol. 62, 76–80 (1996)

    Article  Google Scholar 

  • Khan, I.N., Starink, M.J., Yan, J.L.: A model for precipitation kinetics and strengthening in Al–Cu–Mg alloys. Mater. Sci. Eng. A 472, 66–74 (2008)

    Article  Google Scholar 

  • Kovarik, L., Court, S.A., Fraser, H.L., Mills, M.J.: GPB zones and composite GPB/GPBII zones in Al–Cu–Mg alloys. Acta Mater. 56, 4804–4815 (2008)

    Article  Google Scholar 

  • Lloyd, D.J., Chaturvedi, M.C.: A calorimetric study of aluminium alloy AA-7075. J. Mater. Sci. 17, 1819–1825 (1982)

    Article  Google Scholar 

  • Nagai, Y., Murayama, M., Tang, Z., Nonaka, T., Hono, K., Hasegawa, M.: Role of vacancy–solute complex in the initial rapid age hardening in an Al–Cu–Mg alloy. Acta Mater. 49, 913–920 (2001)

    Article  Google Scholar 

  • Nageswara Rao, P., Jayaganthan, R.: Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and microstructure of Al 6061 alloy. Mater. Des. 39, 226–233 (2012)

    Article  Google Scholar 

  • Ning, A.L., Liu, Z.Y., Zeng, S.M.: Effect of large cold deformation after solution treatment on precipitation characteristic and deformation strengthening of 2024 and 7A04 aluminum alloys. Trans. Nonferr. Met. Soc. China 16, 1341–1347 (2006)

    Article  Google Scholar 

  • Ostermann, F.: Improved fatigue resistance of Al–Zn–Mg–Cu alloys through thermo-mechanical processing. Metall. Trans. 2, 2897–2902 (1971)

    Article  Google Scholar 

  • Papazian, J.M.: The effects of warm working on aluminum alloy 7075-T651. Mater. Sci. Eng. 51, 223–230 (1981)

    Article  Google Scholar 

  • Papazian, J.M.: Calorimetric studies of precipitation and dissolution kinetics in aluminum alloys 2219 and 7075. Metall. Trans. A 13A, 761–769 (1982)

    Article  Google Scholar 

  • Papazian, J.M.: Differential scanning calorimetry evaluation of retrogressed and Re-aged microstructures in aluminum alloy 7075. Mater. Sci. Eng. 79, 97–104 (1986)

    Article  Google Scholar 

  • Parel, T.S., Wang, S.C., Starink, M.J.: Hardening of an Al–Cu–Mg alloy containing type I and II S phase precipitates. Mater. Des. 31, S2–S5 (2010)

    Article  Google Scholar 

  • Park, J.K., Ardell, A.J.: Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and AI–Zn–Mg alloys in various tempers. Mater. Sci. Eng. A 114, 197–203 (1989)

    Article  Google Scholar 

  • Rack, H.J.: The influence of prior strain upon precipitation in a high-purity 6061 aluminum alloy. Mater. Sci. Eng. 29, 179–188 (1977)

    Article  Google Scholar 

  • Ringer, S.P., Hono, K.: Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater. Charact. 44, 101–131 (2000)

    Article  Google Scholar 

  • Ringer, S.P., Sakurai, T., Polmear, I.J.: Origins of hardening in aged Al–Cu–Mg–(Ag) alloys. Acta Mater. 45, 3731–3744 (1997)

    Article  Google Scholar 

  • Shih, H., Ho, N., Huang, J.C.: Precipitation behaviors in Al–Cu–Mg and 2024 aluminum alloys. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 27, 2479–2494 (1996)

    Article  Google Scholar 

  • Singh, S., Goel, D.B.: Influence of thermomechanical ageing on tensile properties of 2014 aluminium alloy. J. Mater. Sci. 25, 3894–3900 (1990)

    Article  Google Scholar 

  • Starink, M.J., Wang, S.C.: The thermodynamics of and strengthening due to co-clusters: general theory and application to the case of Al–Cu–Mg alloys. Acta Mater. 57, 2376–2389 (2009)

    Article  Google Scholar 

  • Starink, M.J., Gao, N., Yan, J.L.: The origins of room temperature hardening of Al–Cu–Mg alloys. Mater. Sci. Eng. A 387, 222–226 (2004)

    Article  Google Scholar 

  • Viana, F., Pinto, A.M.P., Santos, H.M.C., Lopes, A.B.: Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. J. Mater. Process. Technol. 92, 54–59 (1999)

    Article  Google Scholar 

  • Wang, S.C., Starink, M.J.: Two types of S phase precipitates in Al–Cu–Mg alloys. Acta Mater. 55, 933–941 (2007)

    Article  Google Scholar 

  • Wang, S.C., Starink, M.J., Gao, N.: Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 54, 287–291 (2006)

    Article  Google Scholar 

  • Waterloo, G., Hansen, V., Gjønnes, J., Skjervold, S.R.: Effect of predeformation and preaging at room temperature in Al–Zn–Mg–(Cu, Zr) alloys. Mater. Sci. Eng. A 303, 226–233 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Naimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naimi, A., Yousfi, H. & Trari, M. Influence of cold rolling degree and ageing treatments on the precipitation hardening of 2024 and 7075 alloys. Mech Time-Depend Mater 17, 285–296 (2013). https://doi.org/10.1007/s11043-012-9182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9182-0

Keywords

Navigation