Skip to main content
Log in

Modeling of the viscoelastic mechano-sorptive behavior in wood

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper focuses on the modeling of linearly viscoelastic, mechano-sorptive behavior and its effects during moisture content changes in timber. A generalized Kelvin–Voigt model integrating specific hygro-lock springs is developed and associated, in series, with a shrinkage–swelling element. The coupling between moisture content state and mechanical state implies an evolution in rheological parameters. This alternative approach leads to incorporating strain blockings during the drying period as well as memory effects during wetting phases after unloading. An incremental formulation is also established using a finite-element software, and, moreover, an experimental validation from tensile creep-recovery tests is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Armstrong, L.D., Kingston, R.S.T.: Effect of moisture changes on creep in wood. Nature 185, 862–863 (1960)

    Article  Google Scholar 

  • Bazant, Z.P.: Thermodynamics of solidifying or melting viscoelastic material. J. Eng. Mech. 107, 933–955 (1979)

    Google Scholar 

  • Bazant, Z.P.: Constitutive equation of wood at variable humidity and temperature. Wood Sci. Technol. 19, 159–177 (1985)

    Article  Google Scholar 

  • Bazant, Z.P., Carol, I.: Viscoelasticity with aging caused by solidifying of nonaging constituent. J. Eng. Mech. 119, 2252–2269 (1993)

    Article  Google Scholar 

  • Bazant, Z.P., Huet, C.: Thermodynamic functions for aging viscoelasticity: Integral form without internal variables. Int. J. Solids Struct. 36, 3393–4016 (1999)

    Article  Google Scholar 

  • Cariou, J.L.: Caractérisation d’un matériau viscoélastique anisotrope: le bois. Ph.D. Thesis, University of Bordeaux I, France (1987)

  • Chassagne, P., Bou-Saïd, E., Julien, J.F., Galimard, P.: Three dimensional creep model for wood under variable humidity—Numerical analyses at different material scales. Mech. Time-Depend. Mater. 9, 203–223 (2006)

    Google Scholar 

  • Dinwoodie, J.M., Paxton, B.H., Higgins, J., Robson, D.J.: Creep in chipboard. Wood Sci. Technol. 26(1), 39–51 (1991)

    Article  Google Scholar 

  • Dubois, F., Randriambololona, H., Petit, C.: Creep in wood under variable conditions: Numerical modelling and experimental validation. Mech. Time-Depend. Mater. 9, 173–202 (2005)

    Article  Google Scholar 

  • Feninat, F.E.L., Laroche, G., Fiset, M., Mantovani, D.: Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91–104 (2002)

    Article  Google Scholar 

  • Fortino, S., Mirianon, F., Toratti, T.: A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech. Time-Depend. Mater. 13(4), 333–356 (2009)

    Article  Google Scholar 

  • Frandsen, H.L.: Selected constitutive models for simulating the hygromechanical response of wood. Department of Civil Engineering, Aalborg University (2007). ISSN 1901-7294 DCE

  • Frandsen, H.L., Damkilde, L., Svensson, S.: A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood. Holzforschung 61(5), 563–572 (2007)

    Article  Google Scholar 

  • Gandhi, M.V., Thompson, B.S.: Smart Materials and Structures. Chapman & Hall, London (1992)

    Google Scholar 

  • Genevaux, J.M., Guitard, D.: Anisotropie du comportement différé: essai de fluage à température croissante d’un bois de peuplier, pp. 155–166. Groupement Scientifique Rhéologie du Bois, Bordeaux (1988)

  • Ghazlan, G., Caperaa, S., Petit, C.: An incremental formulation for the linear analysis of thin viscoelastic structures using generalized variables. Int. J. Numer. Methods Eng. 38, 3315–3333 (1988)

    Article  Google Scholar 

  • Gril, J.: Une modélisation du comportement hygro-rhéologique du bois à partir de sa microstructure. Ph.D. thesis, Ecole Polytechnique, University of Paris VI, Paris (1988)

  • Gril, J.: Principles of mechano-sorption. In: International COST 508 Wood Mechanics Conference (1996)

    Google Scholar 

  • Grossman, P.U.A.: Requirements of models that exhibit mechanosorptive behavior. Wood Sci. Technol. 10, 163–168 (1976)

    Article  Google Scholar 

  • Hanhijärvi, A.: Advances in the knowledge of the influence of moisture changes on the long-term mechanical performance of timber structures. Mater. Struct. 33, 43–49 (2000)

    Article  Google Scholar 

  • Hanhijärvi, A., Mackenzie-Helnwein, P.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: Orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J. Eng. Mech. 129(9), 996–1005 (2003)

    Article  Google Scholar 

  • Haslach, H.W.: Time-dependent mechanisms in fracture of paper. Mech. Time-Depend. Mater. 13, 11–15 (2009)

    Article  Google Scholar 

  • Hunt, D.: Creep trajectories for beech during moisture changes under load. J. Mater. Sci. 19, 1456–1467 (1984)

    Article  Google Scholar 

  • Hunt, D.: Longitudinal moisture-shrinkage coefficients of softwood at the mechanosorptive creep limit. Wood Sci. Technol. 22, 199–210 (1988)

    Article  Google Scholar 

  • Hunt, D.: A unified approach to creep of wood. Proc. R. Soc. Lond. A 455, 4077–4095 (1999)

    Article  Google Scholar 

  • Husson, J.M., Dubois, F., Sauvat, N.: Modélisation du comportement mécanosorptif des éléments en bois. Eur. J. Environ. Civ. Eng. 12(9–10), 1181–1193 (2008)

    Article  Google Scholar 

  • Husson, J.M., Dubois, F., Sauvat, N.: Elastic response in wood under moisture content variations: Analytic development. Mech. Time-Depend. Mater. 14, 203–217 (2010)

    Article  Google Scholar 

  • Husson, J.M., Dubois, F., Sauvat, N.: A finite element model for shape memory behavior. Mech. Time-Depend. Mater. 15, 213–237 (2011)

    Article  Google Scholar 

  • Ladevèze, P., Sanchez, Ph., Simmonds, J.G.: Beamlike (Saint-Venant) solutions for fully anisotropic elastic tubes of arbitrary closed cross section. Int. J. Solids Struct. 41, 1925–1944 (2004)

    Article  MATH  Google Scholar 

  • Liu, Y., Gal, K., Dunn, M.L., Greenberg, A.R., Diani, J.: Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int. J. Plast. 22, 279–313 (2006)

    Article  MATH  Google Scholar 

  • Mackenzie-Helnwein, P., Hanhijärvi, A.: Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. II: Algorithmic aspects and practical application. J. Eng. Mech. 129(9), 1006–1016 (2003)

    Article  Google Scholar 

  • Martensson, A.: Mechanical behavior of wood exposed to humidity variation. Ph.D. thesis, Lund University, Sweden (1992)

  • Mukuday, S., Yata, S.: Modeling and simulation of viscoelastic behavior (tensile strain) of wood under moisture change. Wood Sci. Technol. 20, 335–348 (1986)

    Article  Google Scholar 

  • Navi, P., Heger, F.: Thermohydromécanique du Bois. Presses Polytechniques et Universitaires Romandes (2005)

  • Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, New York (1998)

    Google Scholar 

  • Pittet, V.: Etude expérimentale des couplages mécanosorptifs dans le bois soumis à des variations hygrométriques contrôlées sous chargement de longue durée. Ph.D. thesis, Federal Polytechnic School of Lausanne (1996)

  • Randriambololona, H.: Modélisation du comportement différé du bois en environnement variable. Ph.D. thesis, University of Limoges, France (2003)

  • Ranta-Maunus, A.: The viscoelasticity of wood at varying moisture content. Wood Sci. Technol. 9, 189–205 (1975)

    Article  Google Scholar 

  • Salin, J.G.: Numerical prediction of checking during timber drying and a new mechanosorptive creep model. Holz Roh- Werkst. 50, 195–200 (1992)

    Article  Google Scholar 

  • Schapery, R.A.: Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech. Time-Depend. Mater. 0, 1–32 (1997)

    Google Scholar 

  • Taylor, R.L., Pister, K.S., Goudreau, G.L.: Thermomechanical analysis of viscoelastic solids. Int. J. Numer. Methods Eng. 2, 45–59 (1970)

    Article  MATH  Google Scholar 

  • Toratti, T.: Creep of timber beams in variable environment. Ph.D. thesis, Helsinki University of Technology (1992)

  • Zienkiewicz, O.C., Watson, M., King, I.P.: A numerical method of viscoelastic stress analysis. Int. J. Mech. Sci. 10, 807–827 (1968)

    Article  Google Scholar 

  • Zocher, M.A., Groves, S.E., Allen, D.H.: A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. Int. J. Numer. Methods Eng. 40(12), 2267–2288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Dubois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, F., Husson, JM., Sauvat, N. et al. Modeling of the viscoelastic mechano-sorptive behavior in wood. Mech Time-Depend Mater 16, 439–460 (2012). https://doi.org/10.1007/s11043-012-9171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9171-3

Keywords

Navigation