Skip to main content
Log in

An analytical model to determine the stress singularity and critical bonding angle for an elastic–viscoelastic bonded joint

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Measurements of interface bonding strengths are necessary for predicting the failure behavior of structures and materials with bi-material interfaces. However, it is well known that due to the discontinuity of material properties, stress singularity may exist at the edges of the interface. For accurate determination of the bonding strength of bi-material interface, the elimination of the stress singularity is necessary. This paper presents an analytical solution for the determination of the stress singularity and the critical bonding angle of a bonded joint between elastic and viscoelastic materials. This solution is based on the analytical solution available for an elastic–elastic bonded joint via the elastic–viscoelastic corresponding principle. For the viscoelastic material, both time-independent and time-dependent Poisson’s ratios are considered to find its effect on the stress singularity. As an example, the developed solution is applied to a simulated aluminum-epoxy bonded joint with a spherical interface. It is found that the critical bonding angle and the order of the stress singularity are different for assuming a time-independent or time-dependent Poisson’s ratio of the idealized viscoelastic epoxy. With the analytical solution developed, it is possible to design an optimal interface geometry that can eliminate the stress singularity from the interface corner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akisanya, A.R., Fleck, N.A.: Interfacial cracking from the free-edge of a long bi-material strip. Int. J. Solids Struct. 34(13), 1645–1665 (1997)

    Article  MATH  Google Scholar 

  • Aksentian, O.K.: Singularities of the stress-strain state of a plate in the neighborhood of an edge. Prikl. Mat. Meh. 31, 78–186 (1967)

    Google Scholar 

  • ASTM D3165: Standard test method for strength properties of adhesives in shear by tension loading of single-lap-joint laminated assemblies. ASTM International, West Conshohocken, PA (2007)

  • ASTM D2095: Standard test method for tensile strength of adhesives by means of bar and rod specimens. ASTM International, West Conshohocken, PA (2008)

  • Bogy, D.B.: Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 35, 460–466 (1968)

    Article  MATH  Google Scholar 

  • Bogy, D.B.: Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. 38, 377–386 (1971)

    Article  Google Scholar 

  • Bogy, D.B., Wang, K.C.: Stress singularities at interface corners in bonded dissimilar isotropic elastic materials. Int. J. Solids Struct. 7, 993–1005 (1971)

    Article  MATH  Google Scholar 

  • Bowen, J.M., Knauss, W.G.: An experimental study of interfacial crack kinking. Exp. Mech. 33(1), 37–43 (1993)

    Article  Google Scholar 

  • Christensen, R.M.: Theory of Viscoelasticity—An Introduction, 2nd edn. Academic Press, New York (1982)

    Google Scholar 

  • Delale, F., Erdogan, F.: Viscoelastic analysis of adhesively bonded joints. J. Appl. Mech. 48, 331–338 (1981)

    Article  MATH  Google Scholar 

  • Dempsey, J.P., Sinclair, G.B.: On the singular behavior at the vertex of a bi-material wedge. J. Elast. 11, 317–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, T.H., Knauss, W.G.: The temperature and frequency dependence of the bulk compliance of poly (vinyl acetate): a re-examination. Mech. Time-Depend. Mater. 1, 33–49 (1997)

    Article  Google Scholar 

  • Dundurs, J.: Discussion. J. Appl. Mech. 36, 650–652 (1969)

    Article  Google Scholar 

  • England, A.H.: On stress singularities in linear elasticity. Int. J. Eng. Sci. 9, 571–585 (1971)

    Article  MATH  Google Scholar 

  • Fung, Y.C.: Introductions to Solid Mechanics. Prentice Hall, New Jersey (1965)

    Google Scholar 

  • Geubelle, P.H., Knauss, W.G.: Finite strains at the tip of a crack in a sheet of hyperelastic material: II. Special bi-material cases. J. Elast. 35(1–3), 99–137 (1994)

    Article  Google Scholar 

  • Geubelle, P.H., Knauss, W.G.: Crack propagation in homogeneous and bi-material sheets under general in-plane loading: nonlinear analysis. J. Appl. Mech. 62(3), 601–606 (1995)

    Article  MATH  Google Scholar 

  • Goglio, L., Rossetto, M.: Stress intensity factor in bonded joints: influence of the geometry. Int. J. Adhes. Adhes. 30, 313–321 (2010)

    Article  Google Scholar 

  • Han, X., Ellyin, F., Xia, Z.: Interface crack between two different viscoelastic media. Int. J. Solids Struct. 38, 7981–7997 (2001)

    Article  MATH  Google Scholar 

  • Hein, V.L., Erdogan, F.: Stress singularities in a two-material wedge. Int. J. Fract. Mech. 7, 317–330 (1971)

    Google Scholar 

  • Jerabek, M., Tscharnuter, D., Major, Z., Ravi-Chandar, K., Lang, R.W.: Relaxation behavior of neat and particulate filled polypropylene in uniaxial and multiaxial compression. Mech. Time-Depend. Mater. 14(1), 47–68 (2010a)

    Article  Google Scholar 

  • Jerabek, M., Major, Z., Lang, R.W.: Strain determination of polymeric materials using digital image correlation. Polym. Test. 29(3), 407–416 (2010b)

    Article  Google Scholar 

  • Kelly, P.A., Hills, D.A., Nowell, D.: The design of joints between elastically dissimilar components (with special reference to ceramic metal joints). J. Strain Anal. Eng. Des. 27, 15–20 (1992)

    Article  Google Scholar 

  • Knauss, W.G.: Fracture mechanics and the time-dependent strength of adhesive joints. J. Compos. Mater. 5, 176–191 (1971)

    Article  Google Scholar 

  • Lauke, B.: Stress concentration along curved interfaces as basis for adhesion tests. Compos. Interfaces 14, 307–320 (2007)

    Article  Google Scholar 

  • Lauke, B., Schüller, T., Schneider, K.: Determination of interface strength between two polymer materials by a new curved interface tensile test. Compos. Interfaces 10, 1–15 (2003)

    Article  Google Scholar 

  • Lee, E.H.: Stress analysis in viscoelastic bodies. Brown University, TR No. 8, Nord 11446 (1954)

  • Lee, E.H.: Stress analysis of viscoelastic bodies. Q. J. Mech. Appl. Math. 13, 183–190 (1955)

    MATH  Google Scholar 

  • Lee, S.S.: Free-edge stress singularity in a two-dimensional unidirectional viscoelastic laminate model. J. Appl. Mech. 64, 408–414 (1997)

    Article  MATH  Google Scholar 

  • Li, Y.L., Hu, S.Y., Yang, Y.Y.: Stresses around the bond edges of axisymmetric deformation joints. Eng. Fract. Mech. 66, 153–170 (2000)

    Article  Google Scholar 

  • Munz, D., Yang, Y.Y.: Stress singularities at the interface in bonded dissimilar materials under mechanical and thermal loading. J. Appl. Mech. 59, 857–862 (1992)

    Article  Google Scholar 

  • Perlman, A.B., Sih, G.C.: Elastostatic problems of curvilinear cracks in bonded dissimilar materials. Int. J. Eng. Sci. 5, 845–867 (1967)

    Article  MATH  Google Scholar 

  • Qian, Z.Q., Akisanya, A.R.: An investigation of the stress singularity near the free edge of scarf joint. Eur. J. Mech. A, Solids 18, 443–463 (1999)

    Article  MATH  Google Scholar 

  • Qian, Z.Q., Akisanya, A.R., Imbabi, M.S.: Edge effects in the failure of elastic/viscoelastic joints subjected to surface tractions. Int. J. Solids Struct. 37, 5973–5994 (2000)

    Article  MATH  Google Scholar 

  • Qvale, D., Ravi-Chandar, K.: Viscoelastic characterization of polymers under multiaxial compression. Mech. Time-Depend. Mater. 8(3), 193–214 (2004)

    Article  Google Scholar 

  • Reedy, E.D.: Intensity of the stress singularity at the interface corner between a bonded elastic and rigid layer. Eng. Fract. Mech. 36, 575–583 (1990)

    Article  Google Scholar 

  • Reedy, E.D.: Free edge stress intensity factor for a bonded ductile layer subjected to shear. J. Appl. Mech. 60, 715–720 (1993a)

    Article  Google Scholar 

  • Reedy, E.D.: Asymptotic interface corner solutions for butt tensile joints. Int. J. Solids Struct. 30, 767–777 (1993b)

    Article  Google Scholar 

  • Schapary, R.A.: Approximate methods of transform inversion for viscoelastic stress analysis. In: Proc. 4th US Nat. Gong. Appl. Mech., vol. 2, pp. 1075–1085 (1962)

    Google Scholar 

  • Schiff, J.L.: The Laplace Transform-Theory and Applications. Springer, New York (1999)

    MATH  Google Scholar 

  • Schmauder, S.: Influence of elastic anisotropy on the edge problem. Met. Ceram. Interfaces 4, 413–419 (1989)

    Google Scholar 

  • Schneider, K., Lauke, B., Schüller, T.: Determination of the interface strength between two polymer materials by a new curved interface tensile test: preliminary experimental results. Compos. Interfaces 10, 581–591 (2003)

    Article  Google Scholar 

  • Stenger, F., Chaudhuri, R., Chiu, J.: A novel sinc solution of the boundary integral form for two-dimensional bi-material elasticity problems. Compos. Sci. Technol. 60, 2197–2211 (2000)

    Article  Google Scholar 

  • Theocaris, P.S.: The order of singularity at a multi-wedge corner of a composite plate. Int. J. Eng. Sci. 12, 107–120 (1974)

    Article  MATH  Google Scholar 

  • Tscharnuter, D., Jerabek, M., Major, Z., Lang, R.W.: Time-dependent Poisson’s ratio of polypropylene compounds for various strain histories. Mech. Time-Depend. Mater. 15(1), 15–28 (2011)

    Article  Google Scholar 

  • Tschoegl, N.W., Knauss, W., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6(1), 3–51 (2002)

    Article  Google Scholar 

  • Wang, P., Xu, L.R.: Convex interfacial joints with least stress singularities in dissimilar materials. Mech. Mater. 38, 1001–1011 (2006)

    Article  Google Scholar 

  • Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, 526–528 (1952)

    Google Scholar 

  • Wu, Z.X.: Design free of stress singularities for bi-material components. Compos. Struct. 65, 339–345 (2004)

    Article  Google Scholar 

  • Xia, Z., Chowdhuri, M.A.K., Ju, F.: A new test method for the measurement of normal-shear bonding strength at bi-material interface. Mech. Adv. Mat. Struct. (2011, accepted)

  • Xu, K.: Experimental study on biaxial normal-shear interface bonding strength between E-glass and epoxy polymer. M.Sc. Thesis, University of Alberta, Canada (2006)

  • Yadagiri, S., Reddy, C.P., Reddy, T.S.: Viscoelastic analysis of adhesively bonded joints. Comput. Struct. 27, 445–454 (1987)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

The research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a research grant to Z. Xia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhuri, M.A.K., Xia, Z. An analytical model to determine the stress singularity and critical bonding angle for an elastic–viscoelastic bonded joint. Mech Time-Depend Mater 16, 343–359 (2012). https://doi.org/10.1007/s11043-011-9166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9166-5

Keywords

Navigation