Skip to main content
Log in

Uniaxial nonlinear viscoelastic viscoplastic modeling of polypropylene

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper presents the application of the Schapery viscoelastic and the Perzyna viscoplastic models to strain recovery data of polypropylene. In a previous study, the recovery of strain after monotonic uniaxial tensile loading was measured to gather information on the viscoelasticity and viscoplasticity. The viscoplastic strains from several load histories were determined and are used to calibrate the viscoplastic model. The parameters of the one-dimensional Schapery model are then found by nonlinear optimization using the strain recovery history. The prediction of stress relaxation and creep behavior is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arenz, R.J.: Nonlinear shear behavior of poly(vinyl acetate) material. Mech. Time-Depend. Mater. 2, 287–305 (1999)

    Article  Google Scholar 

  • Crochon, T., Schönherr, T., Li, C., Lévesque, M.: On finite-element implementation strategies of Schapery-type constitutive theories. Mech. Time-Depend. Mater. 14, 359–387 (2010)

    Article  Google Scholar 

  • Fasce, L.A., Pettarin, V., Marano, C., Rink, M., Frontini, P.M.: Biaxial yielding of polypropylene/elastomeric polyolefin blends: effect of elastomer content and thermal annealing. Polym. Eng. Sci. 48(7), 1414–1423 (2008)

    Article  Google Scholar 

  • Gahleitner, M., Fiebig, J., Wolfschwenger, J., Dreiling, G., Paulik, Ch.: Post-crystallization and physical aging of polypropylene: materials and processing effects. J. Macromol. Sci., Part B B41(4–6), 833–849 (2002)

    Article  Google Scholar 

  • Haj-Ali, R.M., Muliana, A.H.: Numerical finite element formulation of the Schapery non-linear viscoelastic material model. Int. J. Numer. Methods Eng. 59(1), 25–45 (2004)

    Article  MATH  Google Scholar 

  • Heeres, O.M., Suiker, A.S.J., de Borst, R.: A comparison between the Perzyna viscoplastic model and the consistency viscoplastic model. Eur. J. Mech. A, Solids 21(1), 1–12 (2002)

    Article  MATH  Google Scholar 

  • Henriksen, M.: Nonlinear viscoelastic stress analysis—a finite element approach. Comput. Struct. 18(1), 133–139 (1984)

    Article  MATH  Google Scholar 

  • Jerabek, M., Major, Z., Lang, R.W.: Strain determination of polymeric materials using digital image correlation. Polym. Test. 29(3), 407–416 (2010)

    Article  Google Scholar 

  • Kim, J.S., Muliana, A.H.: A time-integration method for the viscoelastic viscoplastic analyses of polymers and finite element implementation. Int. J. Numer. Methods Eng. 79(5), 550–575 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kolařík, J., Pegoretti, A.: Non-linear tensile creep of polypropylene: time-strain superposition and creep prediction. Polymer 47(1), 346–356 (2006)

    Article  Google Scholar 

  • Lai, J., Bakker, A.: Analysis of the non-linear creep of high-density polyethylene. Polymer 36(1), 93–99 (1995)

    Article  Google Scholar 

  • Lai, J., Bakker, A.: 3D Schapery representation for non-linear viscoelasticity and finite element implementation. Comput. Mech. 18(3), 182–191 (1996)

    Article  MATH  Google Scholar 

  • Lévesque, M., Derrien, K., Baptiste, D., Gilchrist, M.D.: On the development and parameter identification of Schapery-type constitutive theories. Mech. Time-Depend. Mater. 12(2), 95–127 (2008)

    Article  Google Scholar 

  • Marano, C., Rink, M.: Shear yielding threshold and viscoelasticity in an amorphous glassy polymer: a study on a styrene-acrylonitrile polymer. Polymer 42(5), 2113–2119 (2001)

    Article  Google Scholar 

  • Marano, C., Rink, M.: Viscoelasticity and shear yielding onset in amorphous glassy polymers. Mech. Time-Depend. Mater. 10(3), 173–184 (2006)

    Article  Google Scholar 

  • Nordin, L.-O., Varna, J.: Nonlinear viscoplastic and nonlinear viscoelastic material model for paper fiber composites in compression. Composites, Part A 37(2), 344–355 (2006)

    Article  Google Scholar 

  • Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  • Quinson, R., Perez, J., Rink, M., Pavan, A.: Components of non-elastic deformation in amorphous glassy polymers. J. Mater. Sci. 31(16), 4387–4394 (1996)

    Article  Google Scholar 

  • Schapery, R.A.: On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9(4), 295–310 (1969)

    Article  Google Scholar 

  • Sorvari, J., Malinen, M., Hämäläinen, J.: Finite ramp time correction method for nonlinear viscoelastic material model. Int. J. Non-Linear Mech. 41(9), 1050–1056 (2006)

    Article  Google Scholar 

  • Tscharnuter, D., Jerabek, M., Major, Z., Pinter, G.: Irreversible deformation of isotactic polypropylene in the pre-yield regime. Eur. Polym. J. 47(5), 989–996 (2011a)

    Article  Google Scholar 

  • Tscharnuter, D., Jerabek, M., Major, Z., Lang, R.W.: On the determination of the relaxation modulus of PP compounds from arbitrary strain histories. Mech. Time-Depend. Mater. 15(1), 1–14 (2011b)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tscharnuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tscharnuter, D., Jerabek, M., Major, Z. et al. Uniaxial nonlinear viscoelastic viscoplastic modeling of polypropylene. Mech Time-Depend Mater 16, 275–286 (2012). https://doi.org/10.1007/s11043-011-9158-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-011-9158-5

Keywords

Navigation