Skip to main content
Log in

Development of a viscoelastic continuum damage model for cyclic loading

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a time dependent material under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. The spectrum-based model is generalized for any strain rate and any uniaxial load history to formulate the damage function. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to formulate a residual strength model. The methodology presented is demonstrated by comparing the peak values of the computed cyclic strain history as well as the residual strength model predictions to the experimental data of a polymer matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Case, S.W., Reifsneider, K.L.: Fatigue of composite materials. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Comprehensive Structural Integrity. Cyclic Loading and Fatigue, vol. 4, pp. 405–442. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Eringen, C.A.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  • Harris, B.: Fatigue in Composites. Woodhead Publishing Ltd., Cambridge (2003)

    Google Scholar 

  • Jessen, S.M., Plumtree, A.: Continuum damage mechanics applied to cyclic behaviour of a glass fibre composite pultrusion. Composites 22, 181–190 (1991)

    Article  Google Scholar 

  • Kachanov, L.M.: On the time to failure under creep conditions. Izv. Akad. Nauk SSR, Otd. Tekhn. Nauk. 8, 26–31 (1958)

    Google Scholar 

  • Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dordrecht (1986)

    MATH  Google Scholar 

  • Kim, Y.R., Little, D.N.: One-dimensional constitutive modeling of asphalt concrete. J. Eng. Mech. 116(4), 751–772 (1990)

    Article  Google Scholar 

  • Lee, H., Kim, Y.R.: Viscoelastic constitutive model for asphalt concrete under cyclic loading. J. Eng. Mech. 124, 32–40 (1998)

    Article  Google Scholar 

  • Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Des. 80, 233–245 (1984)

    Article  Google Scholar 

  • Lemaitre, J., Dufailly, J.: Damage measurements. Eng. Fract. Mech. 28, 643–661 (1987)

    Article  Google Scholar 

  • Park, S.W., Kim, Y.R., Schapery, R.A.: A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mech. Mater. 24, 241–255 (1996)

    Article  Google Scholar 

  • Reifsnider, K.L.: Fatigue of Composite Materials. Composite Materials Series, vol. 4. Elsevier Science, Amsterdam (1991)

    Google Scholar 

  • Schapery, R.A.: On viscoelastic deformation and failure behavior of composite materials with distributed flaws. Adv. Aerospace Struct. Mater. AD-01, 5–20 (1980a)

    Google Scholar 

  • Schapery, R.A.: Models for damage growth and fracture in nonlinear viscoelastic particulate composites. In: Proc. Ninth U.S. National Congress of Applied Mechanics, Book No. H00228, pp. 237–245. ASME, New York (1980b)

    Google Scholar 

  • Schapery, R.A.: Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. Int. J. Fract. 25, 195–223 (1984)

    Article  Google Scholar 

  • Schapery, R.A.: Simplifications in the behavior of viscoelastic composites with growing damage. In: Proc. IUTAM Symp. on Inelastic DeJbrm. of Compos. Mater., Troy, NY, pp. 193–214. Springer, New York (1990)

    Google Scholar 

  • Schapery, R.A.: Nonlinear viscoelastic constitutive equations for composites based on work potentials. In: Twelfth U.S. Nat. Congress of Appl. Mech., Appl., vol. 47, pp. 269–275 (1994)

  • Schapery, R.A., Sicking, D.L.: On nonlinear constitutive equations for elastic and viscoelastic composites with growing damage. In: Bakker, A. (ed.) Mechanical Behaviour of Materials, pp. 45–76. Delft University Press, Delft (1995)

    Google Scholar 

  • Stigh, U.: Continuum damage mechanics and the life-fraction rule. J. Appl. Mech. 73, 702–704 (2006)

    Article  MATH  Google Scholar 

  • Sullivan, R.W.: On the use of a spectrum-based model for linear viscoelastic materials. Mech. Time-Depend Mater. 10(3), 215–2008 (2006)

    Article  Google Scholar 

  • Talreja, R.: Fatigue of Composite Materials. Technomic Publishing Co., Lancaster (1987)

    Google Scholar 

  • Vinogradov, A.M., Jenkins, C.H.M., Winter, R.M.: Cyclic loading effects on durability of polymer systems. In: Monteiro, P.J.M., Chong, K.P., Larsen-Basse, J., Komvopoulos, K. (eds.) Long Term Durability of Structural Materials, pp. 159–170. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  • Weitsman, Y.: A continuum damage model for viscoelastic materials. J. Appl. Mech. 55, 773–780 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, R.W. Development of a viscoelastic continuum damage model for cyclic loading. Mech Time-Depend Mater 12, 329–342 (2008). https://doi.org/10.1007/s11043-008-9069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-008-9069-2

Keywords

Navigation