Skip to main content
Log in

Isothermal physical aging characterization of Polyether-ether-ketone (PEEK) and Polyphenylene sulfide (PPS) films by creep and stress relaxation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This paper considers the experimental characterization of isothermal physical aging of PEEK and PPS films using a dynamic mechanical analyzer. Using the short-term test method established by Struik, momentary creep and stress relaxation curves were measured at several temperatures within 15–35°C below the glass transition temperature (T g ) at various aging times. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates using the PHYAGE program. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time–temperature superposition of the master curves was also performed. The temperature shift factors and aging shift rates for both PEEK and PPS were consistent for both creep and stress relaxation test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bank, L.C., Gentry, T.R., et al.: Accelerated test methods to determine the long-term behavior of FRP composite structures: Environmental effects. J. Reinf. Plast. Compos. 14, 559–587 (1995)

    Google Scholar 

  • Barbero, E.J., Julius, M.J.: Time–temperature-age viscoelastic behavior of commercial polymer blends and felt-filled polymers. Mech. Adv. Mater. Struct. 11, 287–300 (2004)

    Article  Google Scholar 

  • Bradshaw, R.D.: Charaterization and Modeling of Viscoelastic Composite Laminates with Nonisothermal Physical Aging. Northwestern University, Evanston (1997), p. 238

    Google Scholar 

  • Bradshaw, R.D., Brinson, L.C.: Physical aging in polymers and polymer composites: An analysis and method for time–aging time superposition. Polym. Eng. Sci. 37(1), 31–44 (1997a)

    Article  Google Scholar 

  • Bradshaw, R.D., Brinson, L.C.: A sign control method for fitting and interconverting material functions for linearly viscoelastic solids. Mech. Time-Depend. Mater. 1, 85–108 (1997b)

    Article  Google Scholar 

  • Bradshaw, R.D., Brinson, L.C.: Mechanical response of linear viscoelastic composite laminates incorporating non-isothermal physical aging effects. Compos. Sci. Technol. 59(9), 1411–1427 (1999)

    Article  Google Scholar 

  • Brinson, L.C., Gates, T.S.: Effects of physical aging on long-term creep of polymers and polymer matrix composites. Int. J. Solids Struct. 32(6–7), 827–846 (1995)

    Article  MATH  Google Scholar 

  • Canadas, J.C., Diego, J.A., et al.: Comparative TSPC, TSDC and DSC physical ageing studies on PET-a. Polymer 39, 2795–2801 (1998)

    Article  Google Scholar 

  • Carfagna, C., Amendola, E., et al.: Physical aging of amorphous poly(etheretherketone) (peek). Polym. Eng. Sci. 28(18), 1203–1206 (1988)

    Article  Google Scholar 

  • Cheng, S.Z.D., Heberer, D.P., et al.: Structure and thermal history dependent enthalpy relaxation at the glass transition of semi-crystalline polyimides. Polymer 32, 2053–2059 (1991)

    Article  Google Scholar 

  • Cizmecioglu, M., Fedors, R.F., et al.: Effect of physical aging on stress relaxation of poly(methyl methacrylate). Polym. Eng. Sci. 21(14), 940–942 (1981)

    Article  Google Scholar 

  • D’Amore, A., Cocchini, F., et al.: The effect of physical aging on long-term properties of poly-ether-ketone (peek) and peek-based composites. J. Appl. Polym. Sci. 39(5), 1163–1174 (1990)

    Article  Google Scholar 

  • D’Amore, A., Pompo, A., et al.: Viscoelastic effects in poly(ether ether ketone) (peek) and peek-based composites. Compos. Sci. Technol. 41(3), 303–325 (1991)

    Article  Google Scholar 

  • Dong, Y., Ruan, Y., et al.: Studies on glass transition temperature of chitosan with four techniques. J. Appl. Polym. Sci. 93, 1553–1558 (2004)

    Article  Google Scholar 

  • Drozdov, A.D., Dorfmann, A.: Physical aging and the viscoelastic response of glassy polymers: Comparison of observations in mechanical and dilatometric tests. Math. Comput. Model. 37(7–8), 665–681 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Duran, R.S., McKenna, G.B.: A torsional dilatometer for volume change measurements on deformed glasses: Instrument description and measurements on equilibrated glasses. J. Rheol. 34, 813–839 (1990)

    Article  ADS  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  • Fulchiron, R., Cassagnau, V.V., et al.: Deconvolution of polymer melt stress relaxation by the Pade–Laplace method. J. Rheol. 37(1), 17–34 (1993)

    Article  ADS  Google Scholar 

  • Gates, T.S., Feldman, M.: Time-dependent behavior of a graphite thermoplastic composite and the effects of stress and physical aging. J. Compos. Technol. Res. 17(1), 33–42 (1995)

    Article  Google Scholar 

  • Gates, T.S., Veazie, D.R., et al.: A comparison of tension and compression creep in a polymeric composite and the effects of physical aging on creep (NASA-TM-110273), NASA, 1996

  • Hernandez, M.C., Suarez, N.: Physical aging effects on high temperature relaxation of poly(DTH carbonate) and poly(DTO carbonate) monitored by TSPC and TSDC. Polymer 45, 8491–8499 (2004)

    Article  Google Scholar 

  • Hopkins, I.L., Hamming, R.W.: On creep and relaxation. J. Appl. Phys. 28(8), 906–912 (1957)

    Article  ADS  Google Scholar 

  • Hourston, D.J., Song, M., et al.: Modulated differential scanning calorimetry: 2. Studies of physical ageing in polystyrene. Polymer 37, 243–247 (1996)

    Article  Google Scholar 

  • Hu, W., Liu, B., et al.: Physical aging behavior of 6F-PEEK and m-PEEK studied by moduluated differential scanning calorimetry. J. Appl. Polym. Sci. 96, 312–317 (2005)

    Article  Google Scholar 

  • Kemmish, D.J., Hay, J.N.: The effect of physical aging on the properties of amorphous peek. Polymer 26(6), 905–912 (1985)

    Article  Google Scholar 

  • Kovacs, A.J.: Transition Vitreuse dans les Polymeres. Etude Phenomelogique (Vitreous transition in amorphous polymers. Phenomenological study). Fortschritte der Hochpolymeren-Forschung 3, 394–507 (1963)

    Google Scholar 

  • Krishnaswamy, R.K., Geibel, J.F., et al.: Influence of semicrystalline morphology on the physical aging characteristics of poly(phenylene sulfide). Macromolecules 36(8), 2907–2914 (2003)

    Article  ADS  Google Scholar 

  • Lee, A., McKenna, G.B.: Viscoelastic response of epoxy glasses subjected to different thermal treatments. Polym. Eng. Sci. 30(7), 431–435 (1990)

    Article  Google Scholar 

  • Lee, A., McKenna, G.B.: Anomalous aging in two-phase systems: Creep and stress relaxation in rubber-toughened epoxies. J. Polym. Sci. Part B–Polym. Phys. 35, 1167–1174 (1997)

    Article  ADS  Google Scholar 

  • Ma, C.C.M., Lee, C.L., et al.: Effect of physical aging on the toughness of carbon fiber-reinforced poly(ether ether ketone) and poly(phenylene sulfide) composites.1. Polym. Compos. 13(6), 441–447 (1992)

    Article  Google Scholar 

  • Matsumoto, D.S.: Time–temperature superposition and physical aging in amorphous polymers. Polym. Eng. Sci. 28(20), 1313–1317 (1988)

    Article  Google Scholar 

  • McKenna, G.B.: Dilatometric evidence for the decoupling of glassy structure from the mechanical stress field. J. Non-Crystal. Solids 172–174, 756–764 (1994)

    Article  Google Scholar 

  • McKenna, G.B.: Comments on ‘Isobaric volume and enthalpy recovery of glasses. II. A Transparent Multiparameter Theory, by A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, and A.R. Ramos, J. Polym. Sci. Phys. Ed., 17, 1097 (1979)’. J. Polym. Sci. Part B–Polym. Phys. 34, 2463–2465 (1996)

    Article  ADS  Google Scholar 

  • Miyano, Y., Nakada, M., et al.: Effect of physical aging on the creep deformation of an epoxy resin. Mech. Time-Depend. Mater. 4(1), 9–20 (2000)

    Article  Google Scholar 

  • Muzeau, E., Vigier, G., et al.: Changes of thermodynamic and dynamic mechanical properties of poly(methyl methacrylate) due to structural relaxation: Low-temperature ageing and modelling. Polymer 36, 611–620 (1995)

    Article  Google Scholar 

  • O’Connell, P.A., McKenna, G.B.: Large deformation response of polycarbonate: Time–temperature, time–aging time, and time–strain superposition. Polym. Eng. Sci. 37(9), 1485–1495 (1997)

    Article  Google Scholar 

  • Ogale, A.A., McCullough, R.L.: Physical aging characteristics of polyether ether ketone. Compos. Sci. Technol. 30(2), 137–148 (1987)

    Article  Google Scholar 

  • Read, B.E., Dean, G.D., et al.: Physical aging and creep in PVC. Polymer 33(13), 2689–2698 (1992)

    Article  Google Scholar 

  • Robertson, C.G., Wilkes, G.L.: Refractive index: A probe for monitoring volume relaxation during physical aging of glassy polymers. Polymer 39(11), 2129–2133 (1998)

    Article  Google Scholar 

  • Robertson, C.G., Wilkes, G.L.: Physical aging behavior of miscible blends containing atactic polystyrene and poly(2,6-dimethyl-1, 4-phenylene oxide). Polymer 41, 9191–9204 (2000)

    Article  Google Scholar 

  • Santore, M.M., Duran, R.S., et al.: Volume recovery in epoxy glasses subjected to torsional deformations – the question of rejuvenation. Polymer 32(13), 2377–2381 (1991)

    Article  Google Scholar 

  • Schwarzl, F.R., Kaschta, J.: Physical aging and shear creep of poly(carbonate). Mech. Time-Depend. Mater. 2, 13–36 (1998)

    Article  Google Scholar 

  • Spinu, I., McKenna, G.B.: Physical aging of nylon-66. Polym. Eng. Sci. 34(24), 1808–1814 (1994)

    Article  Google Scholar 

  • Spinu, I., McKenna, G.B.: Physical aging of thin films of nylon and PET. J. Plast. Film Sheeting 13, 311–326 (1997)

    Google Scholar 

  • Struik, L.C.E.: Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Amsterdam (1978)

    Google Scholar 

  • Struik, L.C.E.: On the rejuvenation of physically aged polymers by mechanical deformation. Polymer 38(16), 4053–4057 (1997)

    Article  Google Scholar 

  • Sullivan, J.L., Blais, E.J., et al.: Physical aging in the creep-behavior of thermosetting and thermoplastic composites. Compos. Sci. Technol. 47(4), 389–403 (1993)

    Article  Google Scholar 

  • TA Instruments: RSA3 Rheometrics System Analyzer. TA Instruments, New Castle (2003)

    Google Scholar 

  • Tomlins, P.E.: Comparison of different functions for modeling the creep and physical ageing effects in plastics. Polymer 37(17), 3907–3913 (1996)

    Article  Google Scholar 

  • Tomlins, P.E., Read, B.E.: Creep and physical ageing of polypropylene: A comparison of models. Polymer 39(2), 355–367 (1998)

    Article  Google Scholar 

  • Tomlins, P.E., Read, B.E., et al.: The effect of temperature on creep and physical aging of poly(vinyl chloride). Polymer 35(20), 4376–4381 (1994)

    Article  Google Scholar 

  • Tool, A.Q.: Relations between inelastic deformability and thermal expansion of glass in its annealing range. J. Am. Ceram. Soc. 29, 240–253 (1946)

    Article  Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelasticity: An Introduction. Springer, Berlin (1989)

    MATH  Google Scholar 

  • Vleeshouwers, S., Jamieson, A.M., et al.: Effect of physical aging on tensile-stress relaxation and tensile creep of cured Epon-828 epoxy adhesives in the linear viscoelastic region. Polym. Eng. Sci. 29(10), 662–670 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger D. Bradshaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Bradshaw, R.D. Isothermal physical aging characterization of Polyether-ether-ketone (PEEK) and Polyphenylene sulfide (PPS) films by creep and stress relaxation. Mech Time-Depend Mater 11, 61–89 (2007). https://doi.org/10.1007/s11043-007-9032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-007-9032-7

Keywords

Navigation