Skip to main content
Log in

Measurement of Young’s relaxation modulus using nanoindentation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

In a previous paper (Lu et al., Mechanics of Time-Dependent Materials, 7, 2003, 189–207), we described methods to measure the creep compliance of polymers using Berkovich and spherical indenters by nanoindentation. However, the relaxation modulus is often needed in stress and deformation analysis. It has been well known that the interconversion between creep compliance and relaxation function presents an ill-posed problem, so that converting the creep compliance function to the relaxation function cannot always give accurate results, especially considering that the creep data at short times in nanoindentation are often not reliable, and the overall nanoindentation time is short, typically a few hundred seconds. In this paper, we present methods to measure Young’s relaxation functions directly using nanoindentation. A constant-rate displacement loading history is usually used in nanoindentations. Using viscoelastic contact mechanics, Young’s relaxation modulus is extracted using nanoindentation load-displacement data. Three bulk polymers, Polymethyl Methacrylate (PMMA), Polycarbonate (PC) and Polyurethane (PU), are used in this study. The Young’s relaxation functions measured from the nanoindentation are compared with data measured from conventional tensile and shear tests to evaluate the precision of the methods. A reasonably good agreement has been reached for all these materials for indentation depth higher than a certain value, providing reassurance for these methods for measuring relaxation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, L., Xia, X., Yu, W., Scriven, L.E., Gerberich, W.W.: Flat-punch indentation of viscoelastic material. J. Polym. Sci., Part B: Polym. Phys. 38, 10–22 (2000)

    Article  Google Scholar 

  • Cheng, Y.T., Cheng, C.M.: General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Appl. Phys. Lett. 87, Art. No. 111914 (2005)

    Google Scholar 

  • Cheng, Y.T., Ni, W.Y., Cheng, C.M.: Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys. Rev. Lett. 97, Art. No. 075506 (2006)

    Google Scholar 

  • Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601–609 (1992)

    ADS  Google Scholar 

  • Emri, I., Tschoegl, N.W.: Generating line spectra from experimental responses. Part I: elaxation modulus and creep compliance. Rheol. Acta 32, 311–321 (1993)

    Article  Google Scholar 

  • Emri, I., Tschoegl, N.W.: Generating line spectra from experimental responses. Part IV: aplication to experimental data. Rheol. Acta 33, 60–70 (1994)

    Article  Google Scholar 

  • Emri, I., Tschoegl, N.W.: Generating line spectra from experimental responses. Part V. Time-dependent viscosity. Rheol. Acta 36, 303–306 (1997)

    Google Scholar 

  • Fischer-Cripps, A.C.: Nanoindentation, Mechanical Engineering Series. Springer-Verlag, Berlin (2002)

    Google Scholar 

  • Giannakopoulos, A.E.: Strength analysis of spherical indentation of piezoelectric materials. J. Appl. Mech. 67, 409–416 (2000)

    Article  Google Scholar 

  • Hertz, H.: über die Berührung fester elastischer Körper. Journal für die Reine und Angewandte Mathematik 92, 156–171 (1881)

    Google Scholar 

  • Hopkins, I.L., Hamming, R.W.: On creep and relaxation. J. Appl. Phys. 28, 906–909 (1957)

    Article  Google Scholar 

  • Huang, G., Wang, B., Lu, H.: Measurements of viscoelastic functions in frequency-domain by nanoindentation. Mech. Time-Depend. Mater. 8, 345–364 (2004)

    Article  ADS  Google Scholar 

  • Knauss, W.G., Zhu, W.: Nonlinearly viscoelastic behavior of polycarbonate. I. Response under pure shear. Mech. Time-Depend. Mater. 6, 231–169 (2002)

    Article  Google Scholar 

  • Lee, E.H., Radok J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438–444 (1960)

    MathSciNet  Google Scholar 

  • Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)

    Article  Google Scholar 

  • Liu, Y., Wang, B., Yoshino, M., Roy, S., Lu, H., Komanduri, R.: Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J. Mech. Phys. Solids 53, 2718–2741 (2005)

    Article  Google Scholar 

  • Lu, H., Cary, P.D.: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp. Mech. 40, 393–400 (2000)

    Article  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Article  ADS  Google Scholar 

  • Lu, H., Zhang, X., Knauss, W.G.: Uniaxial, shear, and poisson relaxation and their conversion to bulk relaxation: studies on poly(methyl methacrylate). Polym. Eng. Sci. 37, 1053–1064 (1997)

    Article  Google Scholar 

  • Nikonov, A., Davies, A.R., Emri, I.: The determination of creep and relaxation functions from a single experiment. J. Rheol. 49, 1193–1211 (2005)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    ADS  Google Scholar 

  • Odegard, G.M., Gates, T.S., Herring, H.M.: Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp. Mech. 45, 130–136 (2005)

    Article  Google Scholar 

  • Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  Google Scholar 

  • Sane, S.B., Knauss, W.G.: The time-dependent bulk response of poly(mehyl methacrylate). Mech. Time-Depend. Mater. 5, 293–324 (2001)

    Article  Google Scholar 

  • Ting, T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845–854 (1966)

    Google Scholar 

  • Tschoegl, N.W., Emri, I.: Generating line spectra from experimental responses. Part II. Storage and loss functions. Rheol. Acta 32, 322–327 (1993)

    Article  Google Scholar 

  • Tschoegl, N.W., Emri, I.: Generating line spectra from experimental responses. III. Interconversion between relaxation and retardation behavior. Int. J. Polym. Mater. 18, 117–127 (1992)

    Google Scholar 

  • VanLandingham, M.R., Chang, N.-K., Drzal, P.L., White, C.C., Chang, S.-H.: Viscoelastic characterization of polymers using instrumented indentation-1. quasi-static testing. J. Polym. Sci. Part B: Polym. Phys. 43, 1794–1811 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Lu, H. Measurement of Young’s relaxation modulus using nanoindentation. Mech Time-Depend Mater 10, 229–243 (2006). https://doi.org/10.1007/s11043-006-9020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-006-9020-3

Keywords

Navigation