Skip to main content
Log in

Robust primary quantization step estimation on resized and double JPEG compressed images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As one of the most important forensic tasks, reconstruction of the original information in tampered images is a key step for tampering detection and localization. Currently, a number of methods have been designed to estimate the primary quantization steps of double compressed JPEG images. However, the estimation in the presence of resizing operation remains a challenge. In this paper, we propose a robust primary quantization steps estimation method on resized and double JPEG compressed images. Specifically, the distribution of Discrete Cosine Transform (DCT) coefficients is firstly analyzed on the inverse resized image. Then, a maximum likelihood function together with a filtering strategy is designed to obtain the primary quantization step on Alternating Current (AC) bands. In addition, we find the prominent peak in the Discrete Fourier Transform (DFT) spectrum of the distribution of Direct Current (DC) coefficients is nonlinearly related to the step. Based on this observation, a mapping function derived from the geometric fitting is proposed to estimate the step on DC band. Experimental results demonstrate the proposed method provides superior estimation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Algorithm 2
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Database Availability Statement

The database that support the findings of this study are available at http://doi.org/10.1117/12.525375. The code data underlying this article will be shared on reasonable request to the the corresponding author.

References

  1. Kadha V, Das SK (2023) A novel method for resampling detection in highly compressed jpeg images through bar using a deep learning technique. Optik 291:171356. https://doi.org/10.1016/j.ijleo.2023.171356

    Article  Google Scholar 

  2. Yu J, Lu L, Chen Y, Zhu Y, Kong L (2021) An indirect eavesdropping attack of keystrokes on touch screen through acoustic sensing. IEEE Trans Mobile Comput 20(2):337–351. https://doi.org/10.1109/TMC.2019.2947468

    Article  Google Scholar 

  3. Zhou G, Wu G, Zhou X, Xu C, Zhao D, Lin J, Liu Z, Zhang H, Wang Q, Xu J, Song B, Zhang L (2023) Adaptive model for the water depth bias correction of bathymetric lidar point cloud data. Int J Appl Earth Observation and Geoinformation. 118:103253. https://doi.org/10.1016/j.jag.2023.103253

    Article  Google Scholar 

  4. Zhou G, Lin G, Liu Z, Zhou X, Li W, Li X, Deng R (2023) An optical system for suppression of laser echo energy from the water surface on single-band bathymetric lidar. Optics Lasers Eng 163:107468. https://doi.org/10.1016/j.optlaseng.2022.107468

    Article  Google Scholar 

  5. Liu H, Yuan H, Liu Q, Hou J, Zeng H, Kwong S (2022) A hybrid compression framework for color attributes of static 3d point clouds. IEEE Trans Circ Syst Video Technol 32(3):1564–1577. https://doi.org/10.1109/TCSVT.2021.3069838

    Article  Google Scholar 

  6. Cheng D, Chen L, Lv C, Guo L, Kou Q (2022) Light-guided and cross-fusion u-net for anti-illumination image super-resolution. IEEE Trans Circ Syst Video Technol 32(12):8436–8449. https://doi.org/10.1109/TCSVT.2022.3194169

    Article  Google Scholar 

  7. Sheng H, Wang S, Yang D, Cong R, Cui Z, Chen R (2023) Cross-view recurrence-based self-supervised super-resolution of light field. IEEE Trans Circ Syst Video Technol 33(12):7252–7266. https://doi.org/10.1109/TCSVT.2023.3278462

    Article  Google Scholar 

  8. Gavrovska A (2023) Analysis of large-deviation multifractal spectral properties through successive compression for double JPEG detection. Multimed Tools Appl, 1–23

  9. Tang H, Yuan C, Li Z, Tang J (2022) Learning attention-guided pyramidal features for few-shot fine-grained recognition. Pattern Recognit 130:108792

    Article  Google Scholar 

  10. Tang H, Li Z, Peng Z, Tang J (2020) Blockmix: meta regularization and self-calibrated inference for metric-based meta-learning. In: Proceedings of the 28th ACM international conference on multimedia, pp 610– 618

  11. Tang H, Liu J, Yan S, Yan R, Li Z, Tang J (2023) M3net: multi-view encoding, matching, and fusion for few-shot fine-grained action recognition. In: Proceedings of the 31st ACM international conference on multimedia, pp 1719– 1728

  12. Kumar A, Kansal A, Singh K (2019) An improved anti-forensic technique for JPEG compression. Multimedia Tools and Appl 78(18):25427–25453

    Article  Google Scholar 

  13. Liu X, Lu W, Xue Y, Yeung Y (2020) Upscaling factor estimation on double JPEG compressed images. Multimedia Tools and Appl 79:12891–12914

    Article  Google Scholar 

  14. Billa NR, Das BP, Biswal M, Okade M (2024) Cnn based image resizing forensics for double compressed jpeg images. J Inf Secur Appl 81:103693. https://doi.org/10.1016/j.jisa.2023.103693

    Article  Google Scholar 

  15. Ali RR, Mohamad KMB, Mostafa SA, Zebari DA, Jubair MA, Alouane MT-H (2023) A meta-heuristic method for reassemble bifragmented intertwined jpeg image files in digital forensic investigation. IEEE Access 11:111789–111800. https://doi.org/10.1109/ACCESS.2023.3321680

    Article  Google Scholar 

  16. Wang H, Wang J, Zhang J, Luo X, Ma B, Li B, Sun J (2023) General forensics for aligned double jpeg compression based on the quantization interference. IEEE Trans Circ Syst Video Technol 1–1. https://doi.org/10.1109/TCSVT.2023.3341032

  17. Kadha V, Nandikattu VVNJSL, Bakshi S, Das SK (2023) Forensic analysis of manipulation chains: a deep residual network for detecting jpeg-manipulation-jpeg. Forensic Science International: Digital Investigation 47:301623. https://doi.org/10.1016/j.fsidi.2023.301623

    Article  Google Scholar 

  18. Kadha V, Das SK (2022) Robust first quality factor estimation for double compressed and resized images. In: 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), pp 1550–1554. https://doi.org/10.1109/ICOEI53556.2022.9776910

  19. Singh SPJRD (2023) An image forensic technique based on jpeg ghosts. Multimed Tools Appl 82:14153–14169. https://doi.org/10.1007/s11042-022-13699-x

    Article  Google Scholar 

  20. (2023) IEEE transactions on circuits and systems for video technology publication information. IEEE transactions on circuits and systems for video technology 33(5):3–3 https://doi.org/10.1109/TCSVT.2023.3264128

  21. Taneja BVSBDN (2024) Understanding digital image anti-forensics: an analytical review. Multimed Tools Appl 83:10445–10466. https://doi.org/10.1007/s11042-023-15866-0

    Article  Google Scholar 

  22. Pasquini C, Boato G, Pérez-González F (2017) Statistical detection of JPEG traces in digital images in uncompressed formats. IEEE Transactions on Information Forensics and Security 12(12):2890–2905 https://doi.org/10.1109/TIFS.2017.2725201

  23. Luo W, Huang J, Qiu G (2010) JPEG error analysis and its applications to digital image forensics. IEEE Trans Inf Forensic Secur 5(3):480–491. https://doi.org/10.1109/TIFS.2010.2051426

    Article  Google Scholar 

  24. Li B, Ng T-T, Li X, Tan S, Huang J (2015) Revealing the trace of high-quality JPEG compression through quantization noise analysis. IEEE Transactions on information forensics and security 10(3):558–573. https://doi.org/10.1109/TIFS.2015.2389148

    Article  Google Scholar 

  25. Yang J, Zhu G, Huang J, Zhao X (2015) Estimating JPEG compression history of bitmaps based on factor histogram. Digit Sig Proc 41:90–97. https://doi.org/10.1016/j.dsp.2015.03.014

    Article  Google Scholar 

  26. Fan Z, Queiroz RL (2003) Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans Image Proc 12(2):230–235. https://doi.org/10.1109/TIP.2002.807361

    Article  Google Scholar 

  27. Popescu AC, Farid H (2004) Statistical tools for digital forensics. In: International conference on information hiding

  28. Yang J, Xie J, Zhu G, Kwong S, Shi Y-Q (2014) An effective method for detecting double JPEG compression with the same quantization matrix. IEEE transactions on information forensics and security 9(11):1933–1942. https://doi.org/10.1109/TIFS.2014.2359368

    Article  Google Scholar 

  29. Bianchi T, Piva A (2011) Detection of non-aligned double JPEG compression with estimation of primary compression parameters. In: 2011 18th IEEE international conference on image processing, pp 1929– 1932. https://doi.org/10.1109/ICIP.2011.6115848

  30. Barni M, Bondi L, Bonettini N, Bestagini P, Costanzo A, Maggini M, Tondi B, Tubaro S (2017) Aligned and non-aligned double JPEG detection using convolutional neural networks. J Vis Commun Image Represent 49:153–163. https://doi.org/10.1016/j.jvcir.2017.09.003

    Article  Google Scholar 

  31. Wang J, Wang H, Li J, Luo X, Shi YQ, Jha SK (2020) Detecting double JPEG compressed color images with the same quantization matrix in spherical coordinates. IEEE Trans Circ Syst Video Technol 30(8):2736–2749

    Article  Google Scholar 

  32. Pasquini C, Boato G, Perez-Gonzalez F (2014) Multiple JPEG compression detection by means of benford-fourier coefficients. In: 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pp 113–118. https://doi.org/10.1109/WIFS.2014.7084313

  33. Fridrich J, Goljan M, Rui D (2001) Steganalysis based on JPEG compatibility. Proceedings of SPIE - The international society for optical engineering 4518

  34. Li B, Ng T-T, Li X, Tan S, Huang J (2015) Statistical model of JPEG noises and its application in quantization step estimation. IEEE Trans Image Process 24(5):1471–1484. https://doi.org/10.1109/TIP.2015.2405477

    Article  MathSciNet  Google Scholar 

  35. Thai TH, Cogranne R, Retraint F, Doan T-N-C (2017) Jpeg quantization step estimation and its applications to digital image forensics. IEEE Trans Inf Forensics Secur 12(1):123–133. https://doi.org/10.1109/TIFS.2016.2604208

    Article  Google Scholar 

  36. Lin G-S, Chang M-K, Chen Y-L (2011) A passive-blind forgery detection scheme based on content-adaptive quantization table estimation. IEEE Trans Circ Syst Video Technol 21(4):421–434. https://doi.org/10.1109/TCSVT.2011.2125370

    Article  Google Scholar 

  37. Neelamani R, Queiroz R, Fan Z, Baraniuk R (2003) JPEG compression history estimation for color images. In: Proceedings international conference on image processing (Cat. No.03CH37429), 3:245. https://doi.org/10.1109/ICIP.2003.1247227

  38. Yao H, Wei H, Qiao T, Qin C (2020) JPEG quantization step estimation with coefficient histogram and spectrum analyses. J Vis Commun Image Represent 69:102795 https://doi.org/10.1016/j.jvcir.2020.102795

  39. Yang J, Zhang Y, Zhu G, Kwong S (2021) A clustering-based framework for improving the performance of JPEG quantization step estimation. IEEE transactions on circuits and systems for video technology 31(4):1661–1672. https://doi.org/10.1109/TCSVT.2020.3003653

    Article  Google Scholar 

  40. Lukáš J, Fridrich J (2003) Estimation of primary quantization matrix in double compressed JPEG images. proc of dfrws

  41. Galvan F, Puglisi G, Bruna AR, Battiato S (2014) First quantization matrix estimation from double compressed jpeg images. IEEE Trans Inf Forensic Secur 9(8):1299–1310. https://doi.org/10.1109/TIFS.2014.2330312

    Article  Google Scholar 

  42. Xue F, Ye Z, Lu W, Liu H, Li B (2017) Mse period based estimation of first quantization step in double compressed JPEG images. Signal proc: Image Commun 57:76–83. https://doi.org/10.1016/j.image.2017.05.008

    Article  Google Scholar 

  43. Thai TH, Cogranne R (2019) Estimation of primary quantization steps in double-compressed JPEG images using a statistical model of discrete cosine transform. IEEE Access 7:76203–76216. https://doi.org/10.1109/ACCESS.2019.2921324

    Article  Google Scholar 

  44. Yao H, Wei H, Qin C, Zhang X (2020) An improved first quantization matrix estimation for nonaligned double compressed jpeg images. Signal Proc 170:107430

    Article  Google Scholar 

  45. Niu Y, Tondi B, Zhao Y, Barni M (2020) Primary quantization matrix estimation of double compressed JPEG images via cnn. IEEE Signal Proc Lett 27:191–195. https://doi.org/10.1109/LSP.2019.2962997

  46. Li H, Luo W, Qiu X, Huang J (2018) Identification of various image operations using residual-based features. IEEE Trans Circ Syst Video Technol 28(1):31–45. https://doi.org/10.1109/TCSVT.2016.2599849

  47. Ali, Taimori Farbod Razzazi Alireza Behrad Ali Ahmadi Massoud Babaie-Zadeh (2016) Quantization-unaware double JPEG compression detection. J Math Imaging Vis

  48. Kirchner M, Gloe T (2009) On resampling detection in re-compressed images. In: 2009 First IEEE international Workshop on Information Forensics and Security (WIFS), pp 21–25. https://doi.org/10.1109/WIFS.2009.5386489

  49. Bianchi T, Piva A (2012) Reverse engineering of double JPEG compression in the presence of image resizing. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp 127– 132. https://doi.org/10.1109/WIFS.2012.6412637

  50. Sahu S, Okade M (2018) Exposing image resizing utilizing welch power spectral density analysis for double compressed JPEG images. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp 1– 6. https://doi.org/10.1109/WIFS.2018.8630784

  51. Niu Y, Li X, Zhao Y, Ni R (2020) Primary quality factor estimation of resized double compressed JPEG images. In: 2020 IEEE International Conference on Image Processing (ICIP), pp 583– 587. https://doi.org/10.1109/ICIP40778.2020.9190913

  52. Kadha V, Das SK (2022) Robust first quality factor estimation for double compressed and resized images. In: 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), pp 1550– 1554. https://doi.org/10.1109/ICOEI53556.2022.9776910

  53. Gallagher AC (2005) Detection of linear and cubic interpolation in JPEG compressed images. In: The 2nd Canadian conference on Computer and Robot Vision (CRV’05), pp 65– 72. https://doi.org/10.1109/CRV.2005.33

  54. Schaefer G, Stich M (2003) Ucid: an uncompressed color image database. Proc Spie on Storage Retrieval Methods and Applications for Multimedia

  55. Li W, Li X, Ni R, Zhao Y (2022) Quantization step estimation for JPEG image forensics. IEEE Trans Circ Syst Video Technol 32(7):4816–4827. https://doi.org/10.1109/TCSVT.2021.3123477

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62202141) and by Henan Province Science and Technology Research Project (No. 232102210127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaKun Niu.

Ethics declarations

Conflict of interest statement

All author disclosed no relevant relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, X., Niu, Y. et al. Robust primary quantization step estimation on resized and double JPEG compressed images. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19376-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19376-5

Keywords

Navigation