Skip to main content
Log in

Composite spectral spatial pixel CNN for land-use hyperspectral image classification with hybrid activation function

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Deep learning methods have played a prominent role in the development of computer visualization in recent years. Hyperspectral imaging (HSI) is a popular analytical technique based on spectroscopy and visible imaging which examines the pattern of light in a target and recognizes objects based on varying spectral properties. However, in remote sensing, detecting surface material via HSI analysis is a critical and difficult task. The performance of spectral-spatial data exploitation is well established to outperform typical spectral pixel-wise techniques. Because of its great feature extraction ability, convolutional neural networks (CNN) have emerged as a potent deep learning approach. CNN translates the input features of an image into an equivalent CNN feature map, in addition to naturally combining spectral and spatial information. However, spectral-spatial properties when combined with pixel-wise extraction can learn more minute details of objects present on the earth’s terrain. In this paper, a noble Composite Spectral Spatial Pixel CNN model for the classification of hyperspectral data is presented which is an amalgamation of 3D-2D-1D CNN. While the 3D and 2D CNN exploit the spectral-spatial features effectively, 1D CNN works on pixel-wise feature extraction. Further, to optimize the classification performance of the proposed model, a new hybrid activation function Flatten-T Swish is also used which is the combination of ReLU and Swish function. The proposed model is compared with other state-of-the-art models based on three popular HSI datasets, and it is found that the proposed model performs better among others in terms of classification and computation time, giving 98.87% accuracy for Indian Pines, 99.92% accuracy for Pavia University, and 99.99% accuracy for Salinas Valley dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data used for experimentation is available publicly.

References

  1. Xu Y, Wu Z, Wei Z (2015) Spectral–spatial classification of hyperspectral image based on low-rank decomposition. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2370–2380. https://doi.org/10.1109/JSTARS.2015.2434997

    Article  Google Scholar 

  2. Guo Y et al (2021) Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol Indic 120:106935. https://doi.org/10.1016/j.ecolind.2020.106935

    Article  Google Scholar 

  3. Azarafza M, Nanehkaran YA, Akgun H, Mao Y (2021) Application of an image processing-based algorithm for river-side granular sediment gradation distribution analysis. Adv Mater Res 10(3):229–244

    Google Scholar 

  4. Nikoobakht S, Azarafza M, Akgun H, Derakhshani R (2022) Landslide susceptibility assessment by using convolutional neural network. Appl Sci 12(12):5992. https://doi.org/10.3390/app12125992

    Article  Google Scholar 

  5. Hasanlou M, Samadzadegan F (2012) Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier. IEEE Geosci Remote Sens Lett 9(6):1046–1050. https://doi.org/10.1109/LGRS.2012.2189547

    Article  Google Scholar 

  6. Lv W (2020) Overview of hyperspectral image classification. J Sens 2:1–13. https://doi.org/10.1155/2020/4817234

  7. Ma A, Filippi AM, Wang Z, Yin Z (2019) Hyperspectral Image Classification Using Similarity Measurements-Based Deep Recurrent Neural Networks. Remote Sens 11(2):194. https://doi.org/10.3390/rs11020194

    Article  Google Scholar 

  8. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655. https://doi.org/10.1109/TGRS.2016.2636241

    Article  Google Scholar 

  9. Swain S, Bandyopadhyay M, Satapathy SC (2021) Dimensionality Reduction and Evaluation in Hyperspectral Images using LSTM Models. Int Conf Range Technol 1–6. https://doi.org/10.1109/ICORT52730.2021.9582080

  10. Gao P, Wang J, Zhang H, Li Z (2018) Boltzmann entropy-based unsupervised band selection for hyperspectral image classification. IEEE Geosci Remote Sens Lett 16(3):462–466. https://doi.org/10.1109/LGRS.2018.2872358

    Article  Google Scholar 

  11. Ning X, Tian W, He F, Bai X, Sun L, Li W (2023) Hyper-sausage coverage function neuron model and learning algorithm for image classification. Pattern Recognit 136:109216. https://doi.org/10.1016/j.patcog.2022.109216

    Article  Google Scholar 

  12. Ning X, Tian W, Yu Z, Li W, Bai X, Wang Y (2022) HCFNN: High-order coverage function neural network for image classification. Pattern Recognit 131:108873. https://doi.org/10.1016/j.patcog.2022.108873

    Article  Google Scholar 

  13. Ahmad M et al (2021) Hyperspectral image classification—Traditional to deep models: A survey for future prospects. IEEE J Sel Top Appl Earth Obs Remote Sens 15:968–999. https://doi.org/10.1109/JSTARS.2021.3133021

    Article  Google Scholar 

  14. Makantasis K, Karantzalos K, Doulamis A, Doulamis N (2015) Deep supervised learning for hyperspectral data classification through convolutional neural networks. IEEE Int Geosci Remote Sens Symp 2015:4959–4962. https://doi.org/10.1109/IGARSS.2015.7326945

    Article  Google Scholar 

  15. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790. https://doi.org/10.1109/TGRS.2004.831865

    Article  Google Scholar 

  16. Shenming Q, Xiang L, Zhihua G (2022) A new hyperspectral image classification method based on spatial-spectral features. Sci Rep 12(1):1541. https://doi.org/10.1038/s41598-022-05422-5

    Article  Google Scholar 

  17. Bo C, Lu H, Wang D (2018) Spectral-spatial K-Nearest Neighbor approach for hyperspectral image classification. Multimed Tools Appl 77:10419–10436. https://doi.org/10.1007/s11042-017-4403-9

    Article  Google Scholar 

  18. Qian Y, Ye M, Zhou J (2012) Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51(4):2276–2291. https://doi.org/10.1109/TGRS.2012.2209657

    Article  Google Scholar 

  19. Zhou Y, Peng J, Chen CP (2014) Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(2):1082–1095. https://doi.org/10.1109/TGRS.2014.2333539

    Article  Google Scholar 

  20. Guo Y, Qu F, Yu Z, Yu Q (2020) Deep LSTM with Guided Filter for Hyperspectral Image Classification. Comput Inform 39(5):973–993. https://doi.org/10.31577/cai_2020_5_973

    Article  Google Scholar 

  21. Mei S, Li X, Liu X, Cai H, Du Q (2021) Hyperspectral image classification using attention-based bidirectional long short-term memory network. IEEE Trans Geosci Remote Sens 60:1–12. https://doi.org/10.1109/TGRS.2021.3102034

    Article  Google Scholar 

  22. Banerjee A, Banik D (2023) Pooled hybrid-spectral for hyperspectral image classification. Multimed Tools Appl 82:10887–10899. https://doi.org/10.1007/s11042-022-13721-2

    Article  Google Scholar 

  23. Hu WS, Li HC, Pan L, Li W, Tao R, Du Q (2020) Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 58(6):4237–4250. https://doi.org/10.1109/TGRS.2019.2961947

    Article  Google Scholar 

  24. Chen S, Jin M, Ding J (2021) Hyperspectral remote sensing image classification based on dense residual three-dimensional convolutional neural network. Multimed Tools Appl 80:1859–1882. https://doi.org/10.1007/s11042-020-09480-7

    Article  Google Scholar 

  25. Zhong H, Li L, Ren J, Wu W, Wang R (2022) Hyperspectral image classification via parallel multi-input mechanism-based convolutional neural network. Multimed Tools Appl 81:24601–24626. https://doi.org/10.1007/s11042-022-12494-y

    Article  Google Scholar 

  26. Hu F, Xia GS, Hu J, Zhang L (2015) Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens 7(11):14680–14707. https://doi.org/10.3390/rs71114680

    Article  Google Scholar 

  27. Chen Y, Jiang H, Li C, Jia X, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens 54(10):6232–6251. https://doi.org/10.1109/TGRS.2016.2584107

    Article  Google Scholar 

  28. Hamida AB, Benoit A, Lambert P, Amar CB (2018) 3-D deep learning approach for remote sensing image classification. IEEE Trans Geosci Remote Sens 56(8):4420–4434. https://doi.org/10.1109/TGRS.2018.2818945

    Article  Google Scholar 

  29. He M, Li B, Chen H (2017) Multi-scale 3D deep convolutional neural network for hyperspectral image classification. IEEE Int Conf Image Process 2017:3904–3908. https://doi.org/10.1109/ICIP.2017.8297014

    Article  Google Scholar 

  30. Roy SK, Krishna G, Dubey SR, Chaudhuri BB (2019) HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci Remote Sens Lett 17(2):277–281. https://doi.org/10.1109/LGRS.2019.2918719

    Article  Google Scholar 

  31. Bandyopadhyay M (2021) Multi-stack hybrid CNN with non-monotonic activation functions for hyperspectral satellite image classification. Neural Comput Appl 33(21):14809–14822. https://doi.org/10.1007/s00521-021-06120-5

    Article  Google Scholar 

  32. Zhong Z, Li J, Luo Z, Chapman M (2017) Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans Geosci Remote Sens 56(2):847–858. https://doi.org/10.1109/TGRS.2017.2755542

    Article  Google Scholar 

  33. Mou L, Ghamisi P, Zhu XX (2017) Unsupervised spectral–spatial feature learning via deep residual Conv–Deconv network for hyperspectral image classification. IEEE Trans Geosci Remote Sens 56(1):391–406. https://doi.org/10.1109/TGRS.2017.2748160

    Article  Google Scholar 

  34. Roy SK, Chatterjee S, Bhattacharyya S, Chaudhuri BB, Platos J (2020) Lightweight spectral–spatial squeeze-and-excitation residual bag-of-features learning for hyperspectral classification. IEEE Trans Geosci Remote Sens 58(8):5277–5290. https://doi.org/10.1109/TGRS.2019.2961681

    Article  Google Scholar 

  35. Zhong C, Zhang J, Zhang Y (2020) Multiscale feature extraction based on convolutional sparse decomposition for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4960–4972. https://doi.org/10.1109/JSTARS.2020.3019300

    Article  Google Scholar 

  36. Li W, Prasad S, Fowler JE (2013) Hyperspectral image classification using Gaussian mixture models and Markov random fields. IEEE Geosci Remote Sens Lett 11(1):153–157. https://doi.org/10.1109/LGRS.2013.2250905

    Article  Google Scholar 

  37. Patel H, Upla KP (2022) A shallow network for hyperspectral image classification using an autoencoder with convolutional neural network. Multimed Tools Appl 81:695–714. https://doi.org/10.1007/s11042-021-11422-w

    Article  Google Scholar 

  38. He Z, Liu H, Wang Y, Hu J (2017) Generative adversarial networks-based semi-supervised learning for hyperspectral image classification. Remote Sens 9(10):1042. https://doi.org/10.3390/rs9101042

    Article  Google Scholar 

  39. Sellami A, Tabbone S (2022) Deep neural networks-based relevant latent representation learning for hyperspectral image classification. Pattern Recognit 121:108224. https://doi.org/10.1016/j.patcog.2021.108224

    Article  Google Scholar 

  40. Yao D et al (2023) Deep hybrid: multi-graph neural network collaboration for hyperspectral image classification. Def Technol 23:164–176. https://doi.org/10.1016/j.dt.2022.02.007

    Article  Google Scholar 

  41. Ibanez D, Fernandez R, Pla F, Yokoya N (2022) Masked Auto-Encoding Spectral-Spatial Transformer for Hyperspectral Image Classification. IEEE Trans Geosci Remote Sens 60:1–14. https://doi.org/10.1109/TGRS.2022.3217892

    Article  Google Scholar 

  42. Mekala S, Rani BP (2020) Kernel PCA based dimensionality reduction techniques for preprocessing of Telugu text documents for cluster analysis. Int J Adv Res Eng Technol 11(11):1337–1352. https://doi.org/10.34218/IJARET.11.11.2020.121

    Article  Google Scholar 

  43. Scholkopf B, Smola A, Muller K (1997) Kernel Principal Component Analysis. In: Gerstner W, Germond A, Hasler M, Nicoud JD (eds) Artif Neural Net 1327. Springer, Heidelberg. https://doi.org/10.1007/BFb0020217

  44. Swain S, Banerjee A (2021) Evaluation of dimensionality reduction techniques on hybrid CNN–based HSI classification. Arab J Geosci 14:2806. https://doi.org/10.1007/s12517-021-09143-3

    Article  Google Scholar 

  45. Ranjan P, Girdhar A (2023) Deep Siamese Network with Handcrafted Feature Extraction for Hyperspectral Image Classification. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-15444-4

    Article  Google Scholar 

  46. Gao J, Gao X, Wu N, Yang H (2022) Bi-directional LSTM with multi-scale dense attention mechanism for hyperspectral image classification. Multimed Tools Appl 81:24003–24020. https://doi.org/10.1007/s11042-022-12809-z

    Article  Google Scholar 

Download references

Funding

No funding support has been received by any means from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mainak Bandyopadhyay.

Ethics declarations

Competing Interests

The authors would like to declare no competing interest in the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Swain, S., Rout, M. et al. Composite spectral spatial pixel CNN for land-use hyperspectral image classification with hybrid activation function. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19327-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19327-0

Keywords

Navigation