Skip to main content
Log in

Abstract

The primary causes of vision loss are disorders of the retina, such as diabetic retinopathy (DR). The ability to segment blood vessels in retinal images is crucial for the early detection of eye disorders. The geometric characteristics of the ocular arteries can be used to distinguish between various ocular illnesses symptoms. However, segmenting the retina image is a difficult task because of the intricate structure of the blood vessels and their varying thicknesses. Many segmentation techniques have aided in the identification of retinal disorders. These segmentation approaches vary in complexity, from simple clustering algorithms to more complex machine-learning models. This research is essential to understand the contemporary segmentation methods and the challenges that still lay ahead. It also provides a useful overview of the current trends in retinal vascular segmentation, allowing researchers to identify potential areas for further development. By understanding the current trends, researchers can develop more effective segmentation techniques that are tailored to specific applications. Additionally, they can improve existing algorithms and methods, making them more accurate and efficient. By comparing different methods and algorithms on freely accessible databases, researchers can gain a greater comprehension of the strengths and weaknesses of each method. In order to provide a systematic review, articles from 2004 to 2023 are considered, with an emphasis on techniques based on segmenting and classifying retinal vessels utilizing fundus camera pictures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article because of proprietary nature.

Code availability

Code sharing is not applicable to this article because of proprietary nature.

References

  1. Van Gelder RN, Chiang MF, Dyer MA, Greenwell TN, Levin LA, Wong RO, Svendsen CN (2022) Regenerative and restorative medicine for eye disease. Nat Med 28(6):1149–1156

    Article  Google Scholar 

  2. Spaide RF, Fujimoto JG, Waheed NK (2015) Image artifacts in optical coherence angiography. Retina (Philadelphia, Pa.) 35(11):2163

    Article  Google Scholar 

  3. Hemelings R, Elen B, Stalmans I, Van Keer K, De Boever P, Blaschko MB (2019) Artery–vein segmentation in fundus images using a fully convolutional network. Comput Med Imaging Graph 76:101636

    Article  Google Scholar 

  4. Kawaguchi A, Sharafeldin N, Sundaram A, Campbell S, Tennant M, Rudnisky C, Weis E, Damji KF (2018) Tele-ophthalmology for age-related macular degeneration and diabetic retinopathy screening: a systematic review and meta-analysis. Telemedicine and e-Health 24(4):301–308

    Article  Google Scholar 

  5. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) Blood vessel segmentation methodologies in retinal images–a survey. Comput Methods Programs Biomed 108(1):407–433

    Article  Google Scholar 

  6. Gopalakrishnan K, Khaitan SK, Choudhary A, Agrawal A (2017) Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr Build Mater 157:322–330

    Article  Google Scholar 

  7. Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina, IEEE Trans. Med. Imaging 501–509

  8. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  9. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Article  Google Scholar 

  10. Budai A, Bock R, Maier A, Hornegger J, Michelson G (2013) Robust vessel segmentation in fundus images. International journal of biomedical imaging, 2013

  11. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B (2014) Feedback on a publicly distributed image database: The Messidor database. Image Analysis & Stereology 33(3):231–234

    Article  Google Scholar 

  12. Zhang Z, Yin FS, Liu J, Wong WK, Tan NM, Lee BH, Cheng J, Wong TY (2010) August. Origa-light: An online retinal fundus image database for glaucoma analysis and research. In 2010 Annual international conference of the IEEE engineering in medicine and biology (pp. 3065–3068). IEEE

  13. Holm S, Russell G, Nourrit V, McLoughlin N (2017) DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. Journal of Medical Imaging 4(1):014503–014503

    Article  Google Scholar 

  14. Prentašić P, Lončarić S, Vatavuk Z, Benčić G, Subašić M, Petković T, Dujmović L, Malenica-Ravlić M, Budimlija N, Tadić R (2013) September. Diabetic retinopathy image database (DRiDB): a new database for diabetic retinopathy screening programs research. In 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA) (pp. 711–716). IEEE

  15. Abbasi-Sureshjani S, Smit-Ockeloen I, Zhang J, Ter Haar Romeny B (2015) Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images. In Image Analysis and Recognition: 12th International Conference, ICIAR 2015, Niagara Falls, ON, Canada, July 22–24, 2015, Proceedings 12 (pp. 325–334). Springer International Publishing

  16. Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S (2008) August. A reference data set for retinal vessel profiles. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 2262–2265). IEEE

  17. Wang R, Zheng L, Xiong C, Qiu C, Li H, Hou X, Sheng B, Li P, Wu Q (2017) Retinal optic disc localization using convergence tracking of blood vessels. Multimedia Tools and Applications 76:23309–23331

    Article  Google Scholar 

  18. Sivaswamy J, Krishnadas S, Chakravarty A, Joshi G, Tabish AS (2015) A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomedical Imaging Data Papers 2(1):1004

    Google Scholar 

  19. Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S (2015) Retinal artery-vein classification via topology estimation. IEEE Trans Med Imaging 34(12):2518–2534

    Article  Google Scholar 

  20. Cabrera MT, Wallace DK, Freedman SF, Farsiu S (2012) Exploratory Dijkstra forest based automatic vessel segmentation: applications in video indirect ophthalmoscopy (VIO). Biomedical optics express 3(2):327–339

    Article  Google Scholar 

  21. Zhang B, Zhang L, Zhang L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40(4):438–445

    Article  Google Scholar 

  22. Odstrcilik J, Kolar R, Budai A, Hornegger J, Jan J, Gazarek J, Kubena T, Cernosek P, Svoboda O, Angelopoulou E (2013) Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database. IET Image Proc 7(4):373–383

    Article  MathSciNet  Google Scholar 

  23. Zhang J, Dashtbozorg B, Bekkers E, Pluim JP, Duits R, ter Haar Romeny BM (2016) Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imaging 35(12):2631–2644

    Article  Google Scholar 

  24. Strisciuglio N, Azzopardi G, Vento M, Petkov N (2016) Supervised vessel delineation in retinal fundus images with the automatic selection of B-COSFIRE filters. Mach Vis Appl 27:1137–1149

    Article  Google Scholar 

  25. Muzammil N, Shah SAA, Shahzad A, Khan MA, Ghoniem RM (2022) Multifilters-Based Unsupervised Method for Retinal Blood Vessel Segmentation. Appl Sci 12(13):6393

    Article  Google Scholar 

  26. Maison, Lestari T, Luthfi A (2019) Retinal blood vessel segmentation using Gaussian filter. J Phys Conf Ser 1376:012023. https://doi.org/10.1088/1742-6596/1376/1/012023

  27. Ghoshal R, Saha A, Das S (2019) An improved vessel extraction scheme from retinal fundus images. Multimedia Tools and Applications 78(18):25221–25239

    Article  Google Scholar 

  28. Neto LC, Ramalho GL, Neto JFR, Veras RM, Medeiros FN (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78:182–192

    Article  Google Scholar 

  29. Upadhyay K, Agrawal M, Vashist P (2020) Unsupervised multiscale retinal blood vessel segmentation using fundus images. IET Image Proc 14(11):2616–2625

    Article  Google Scholar 

  30. Gopinath VM, Segmentation of Blood Vessels from Retinal Images using Image Processing

  31. Ganesan P, Joseph LMI, Ravichandran M, Subramanian KM, Velavan SA (2018) Detection and segmentation of retinal blood vessel in digital RGB and CIELUV color space fundus images. Research Journal of Pharmacy and Technology 11(6):2326–2330

    Article  Google Scholar 

  32. Lázár I, Hajdu A (2015) Segmentation of retinal vessels by means of directional response vector similarity and region growing. Comput Biol Med 66:209–221

    Article  Google Scholar 

  33. Abdulsahib AA, Mahmoud MA, Aris H, Gunasekaran SS, Mohammed MA (2022) An automated image segmentation and useful feature extraction algorithm for retinal blood vessels in fundus images. Electronics 11(9):1295

    Article  Google Scholar 

  34. Roychowdhury S, Koozekanani DD, Parhi KK (2015) Iterative vessel segmentation of fundus images. IEEE Trans Biomed Eng 62(7):1738–1749

    Article  Google Scholar 

  35. BahadarKhan K, AKhaliq A, Shahid M (2016) A morphological hessian based approach for retinal blood vessels segmentation and denoising using region based Otsu thresholding. PLoS ONE 11(7):e0158996

    Article  Google Scholar 

  36. Akram MU, Khan SA (2013) Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Engineering with Computers 29:165–173

    Article  Google Scholar 

  37. Mapayi T, Viriri S, Tapamo JR (2015) Adaptive thresholding technique for retinal vessel segmentation based on GLCM-energy information. Computational and mathematical methods in medicine, 2015

  38. Vermeer KA, Vos FM, Lemij HG, Vossepoel AM (2004) A model based method for retinal blood vessel detection. Comput Biol Med 34(3):209–219

    Article  Google Scholar 

  39. VINEELA T, BALAJI K, VAMSI KS, KIRAN PR, RAJ PSK (2021) Retinal Blood Vessel Segmentation Using PCA

  40. Yin X, Ng BW, He J, Zhang Y, Abbott D (2014) Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS ONE 9(4):e95943

    Article  Google Scholar 

  41. Saleh MD, Eswaran C (2012) An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding. Comput Methods Biomech Biomed Engin 15(5):517–525

    Article  Google Scholar 

  42. Aswini S, Suresh A, Priya S, Krishna BS (2018) February. Retinal vessel segmentation using morphological top hat approach on diabetic retinopathy images. In 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (pp. 1–5). IEEE

  43. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, Gao X (2018) Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309:179–191

    Article  Google Scholar 

  44. Zhang S, Fu H, Xu Y, Liu Y, Tan M (2020) Retinal image segmentation with a structure-texture demixing network. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23 (pp. 765–774). Springer International Publishing

  45. Uysal E, Güraksin GE (2021) Computer-aided retinal vessel segmentation in retinal images: convolutional neural networks. Multimedia Tools and Applications 80:3505–3528

    Article  Google Scholar 

  46. Wu Y, Xia Y, Song Y, Zhang Y, Cai W (2020) NFN+: A novel network followed network for retinal vessel segmentation. Neural Netw 126:153–162

    Article  Google Scholar 

  47. Perfetti R, Ricci E, Casali D, Costantini G (2007) Cellular neural networks with virtual template expansion for retinal vessel segmentation. IEEE Trans Circuits Syst II Express Briefs 54(2):141–145

    Article  Google Scholar 

  48. Gao J, Huang Q, Gao Z, Chen S (2022) Image Segmentation of Retinal Blood Vessels Based on Dual-Attention Multiscale Feature Fusion. Computational and Mathematical Methods in Medicine, 2022

  49. Wang C, Zhao Z, Ren Q, Xu Y, Yu Y (2019) Dense U-net based on patch-based learning for retinal vessel segmentation. Entropy 21(2):168

    Article  MathSciNet  Google Scholar 

  50. Franklin SW, Rajan SE (2014) Computerized screening of diabetic retinopathy employing blood vessel segmentation in retinal images. Biocybernetics and Bbiomedical engineering 34(2):117–124

    Article  Google Scholar 

  51. Tong H, Fang Z, Wei Z, Cai Q, Gao Y (2021) SAT-Net: a side attention network for retinal image segmentation. Appl Intell 51:5146–5156

    Article  Google Scholar 

  52. Luo Y, Pan J, Fan S, Du Z, Zhang G (2020) Retinal image classification by self-supervised fuzzy clustering network. IEEE Access 8:92352–92362

    Google Scholar 

  53. Li J, Gao G, Liu Y, Yang L (2023) MAGF-Net: A multiscale attention-guided fusion network for retinal vessel segmentation. Measurement 206:112316

    Article  Google Scholar 

  54. Liu Y, Shen J, Yang L, Yu H, Bian G (2023) Wave-Net: A lightweight deep network for retinal vessel segmentation from fundus images. Comput Biol Med 152:106341

    Article  Google Scholar 

  55. Boudegga H, Elloumi Y, Akil M, Bedoui MH, Kachouri R, Abdallah AB (2021) Fast and efficient retinal blood vessel segmentation method based on deep learning network. Comput Med Imaging Graph 90:101902

    Article  Google Scholar 

  56. Wang X, Jiang X, Ren J (2019) Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recogn 88:331–341

    Article  Google Scholar 

  57. Tchinda BS, Tchiotsop D, Noubom M, Louis-Dorr V, Wolf D (2021) Retinal blood vessels segmentation using classical edge detection filters and the neural network. Informatics in Medicine Unlocked 23:100521

    Article  Google Scholar 

  58. Wang B, Wang S, Qiu S, Wei W, Wang H, He H (2020) CSU-Net: A context spatial U-Net for accurate blood vessel segmentation in fundus images. IEEE J Biomed Health Inform 25(4):1128–1138

    Article  Google Scholar 

  59. Fan Z, Mo J, Qiu B, Li W, Zhu G, Li C, Hu J, Rong Y, Chen X (2019) Accurate retinal vessel segmentation via octave convolution neural network. arXiv preprint arXiv:1906.12193

  60. Cherukuri V, Bg VK, Bala R, Monga V (2019) Deep retinal image segmentation with regularization under geometric priors. IEEE Trans Image Process 29:2552–2567

    Article  Google Scholar 

  61. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Article  Google Scholar 

  62. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2015) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118

    Article  Google Scholar 

  63. Park KB, Choi SH, Lee JY (2020) M-GAN: Retinal blood vessel segmentation by balancing losses through stacked deep fully convolutional networks. IEEE Access 8:146308–146322

    Article  Google Scholar 

  64. Marín D, Aquino A, Gegúndez-Arias ME, Bravo JM (2010) A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Article  Google Scholar 

  65. Li D, Rahardja S (2021) BSEResU-Net: An attention-based before-activation residual U-Net for retinal vessel segmentation. Comput Methods Programs Biomed 205:106070

    Article  Google Scholar 

  66. Gegundez-Arias ME, Marin-Santos D, Perez-Borrero I, Vasallo-Vazquez MJ (2021) A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. Comput Methods Programs Biomed 205:106081

    Article  Google Scholar 

  67. Toptaş B, Hanbay D (2021) Retinal blood vessel segmentation using pixel-based feature vector. Biomed Signal Process Control 70:103053

    Article  Google Scholar 

  68. Tamim N, Elshrkawey M, Abdel Azim G, Nassar H (2020) Retinal blood vessel segmentation using hybrid features and multi-layer perceptron neural networks. Symmetry 12(6):894

    Article  Google Scholar 

  69. Dharmawan DA, Li D, Ng BP, Rahardja S (2019) A new hybrid algorithm for retinal vessels segmentation on fundus images. IEEE Access 7:41885–41896

    Article  Google Scholar 

  70. Hu X, Wang L, Cheng S, Li Y (2021) HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation. PLoS ONE 16(9):e0257013

    Article  Google Scholar 

  71. Jiang Y, Wu C, Wang G, Yao HX, Liu WH (2021) MFI-Net: A multi-resolution fusion input network for retinal vessel segmentation. PLoS ONE 16(7):e0253056

    Article  Google Scholar 

  72. Liu W, Jiang Y, Zhang J, Ma Z (2021) RFARN: Retinal vessel segmentation based on reverse fusion attention residual network. PLoS ONE 16(12):e0257256

    Article  Google Scholar 

  73. Chen D, Yang W, Wang L, Tan S, Lin J, Bu W (2022) PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation. PLoS ONE 17(1):e0262689

    Article  Google Scholar 

  74. Jiang Z, Zhang H, Wang Y, Ko SB (2018) Retinal blood vessel segmentation using fully convolutional network with transfer learning. Comput Med Imaging Graph 68:1–15

    Article  Google Scholar 

  75. Lin Z, Huang J, Chen Y, Zhang X, Zhao W, Li Y, Lu L, Zhan M, Jiang X, Liang X (2021) A high resolution representation network with multi-path scale for retinal vessel segmentation. Comput Methods Programs Biomed 208:106206

    Article  Google Scholar 

  76. Xu S, Chen Z, Cao W, Zhang F, Tao B (2021) Retinal vessel segmentation algorithm based on residual convolution neural network. Frontiers in Bioengineering and Biotechnology, p.1292

  77. Khanal A, Estrada R (2020) Dynamic deep networks for retinal vessel segmentation. Frontiers in Computer Science, p.35

  78. Chala M, NsiriElyousfiAlaoui BMH, Soulaymani A, Mokhtari A, Benaji B (2021) An automatic retinal vessel segmentation approach based on Convolutional Neural Networks. Expert Syst Appl 184:115459

    Article  Google Scholar 

  79. Li Z, Jia M, Yang X, Xu M (2021) Blood vessel segmentation of retinal image based on Dense-U-Net network. Micromachines 12(12):1478

    Article  Google Scholar 

  80. Melinscak M, Prentasic P, Loncaric S (2015) March. Retinal Vessel Segmentation using Deep Neural Networks. In VISAPP (1) (pp. 577–582)

  81. Ren K, Chang L, Wan M, Gu G, Chen Q (2022) An improved U-net based retinal vessel image segmentation method. Heliyon 8(10):e11187

    Article  Google Scholar 

  82. NA S, Akbar M, Yadav D (2021) Retinal blood vessel segmentation using a deep learning method based on modified U-NET model

  83. Brea LS, De Jesus DA, Klein S, van Walsum T (2020) September. Deep learning-based retinal vessel segmentation with cross-modal evaluation. In Medical Imaging with Deep Learning (pp. 709–720). PMLR

  84. Gargari MS, Seyedi MH, Alilou M (2022) Segmentation of Retinal Blood Vessels Using U-Net++ Architecture and Disease Prediction. Electronics 11(21):3516

    Article  Google Scholar 

  85. Saeed AN (2020) A machine learning based approach for segmenting retinal nerve images using artificial neural networks. Engineering, Technology & Applied Science Research 10(4):5986–5991

    Article  Google Scholar 

  86. JemimaJebaseeli T, AnandDevaDurai C, DineshPeter J (2021) Retinal blood vessel segmentation from depigmented diabetic retinopathy images. IETE J Res 67(2):263–280

    Article  Google Scholar 

  87. Ngo L, Cha J, Han JH (2019) Deep neural network regression for automated retinal layer segmentation in optical coherence tomography images. IEEE Trans Image Process 29:303–312

    Article  MathSciNet  Google Scholar 

  88. David SA, Mahesh C, Kumar VD, Polat K, Alhudhaif A, Nour M (2022) Retinal blood vessels and optic disc segmentation using U-net. Math Probl Eng 2022:1–11

    Article  Google Scholar 

  89. Laibacher T, Weyde T, Jalali S (2019) M2u-net: Effective and efficient retinal vessel segmentation for real-world applications. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 0–0)

  90. Li X, Jiang Y, Li M, Yin S (2020) Lightweight attention convolutional neural network for retinal vessel image segmentation. IEEE Trans Industr Inf 17(3):1958–1967

    Article  Google Scholar 

  91. Soares JV, Leandro JJ, Cesar RM, Jelinek HF, Cree MJ (2006) Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imaging 25(9):1214–1222

    Article  Google Scholar 

  92. Ricci E, Perfetti R (2007) Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans Med Imaging 26(10):1357–1365

    Article  Google Scholar 

  93. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  94. Aslani S, Sarnel H (2016) A new supervised retinal vessel segmentation method based on robust hybrid features. Biomed Signal Process Control 30:1–12

    Article  Google Scholar 

  95. Thangaraj S, Periyasamy V, Balaji R (2018) Retinal vessel segmentation using neural network. IET Image Proc 12(5):669–678

    Article  Google Scholar 

  96. Zhang L, Fisher M, Wang W (2015) Retinal vessel segmentation using multi-scale textons derived from keypoints. Comput Med Imaging Graph 45:47–56

    Article  Google Scholar 

  97. Lupascu CA, Tegolo D, Trucco E (2010) FABC: retinal vessel segmentation using AdaBoost. IEEE Trans Inf Technol Biomed 14(5):1267–1274

    Article  Google Scholar 

  98. OSAREH A, Shadgar B (2009) Automatic blood vessel segmentation in color images of retina. Iranian Journal of Science and Technology Transaction B: Engineering 33(2)

  99. Adapa D, Joseph Raj AN, Alisetti SN, Zhuang Z, Naik G (2020) A supervised blood vessel segmentation technique for digital Fundus images using Zernike Moment based features. PLoS ONE 15(3):e0229831

    Article  Google Scholar 

  100. Memari N, Ramli AR, Bin Saripan MI, Mashohor S, Moghbel M (2017) Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier. PLoS ONE 12(12):e0188939

    Article  Google Scholar 

  101. Kushol R, Kabir MH, Abdullah-Al-Wadud M, Islam MS (2020) Retinal blood vessel segmentation from fundus image using an efficient multiscale directional representation technique Bendlets. Math Biosci Eng 17(6):7751–7771

    Article  MathSciNet  Google Scholar 

  102. Karn PK, Biswal B, Samantaray SR (2019) Robust retinal blood vessel segmentation using hybrid active contour model. IET Image Proc 13(3):440–450

    Article  Google Scholar 

  103. Nguyen UT, Bhuiyan A, Park LA, Ramamohanarao K (2013) An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recogn 46(3):703–715

    Article  Google Scholar 

  104. Yin Y, Adel M, Bourennane S (2013) Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation. Computational and mathematical methods in medicine, 2013

  105. Vlachos M, Dermatas E (2010) Multi-scale retinal vessel segmentation using line tracking. Comput Med Imaging Graph 34(3):213–227

    Article  Google Scholar 

  106. Zhou C, Zhang X, Chen H (2020) A new robust method for blood vessel segmentation in retinal fundus images based on weighted line detector and hidden Markov model. Comput Methods Programs Biomed 187:105231

    Article  Google Scholar 

  107. Geetharamani R, Balasubramanian L (2015) Automatic segmentation of blood vessels from retinal fundus images through image processing and data mining techniques. Sadhana 40:1715–1736

    Article  MathSciNet  Google Scholar 

  108. Nazir T, Irtaza A, Javed A, Malik H, Hussain D, Naqvi RA (2020) Retinal image analysis for diabetes-based eye disease detection using deep learning. Appl Sci 10(18):6185

    Article  Google Scholar 

  109. Oliveira WS, Teixeira JV, Ren TI, Cavalcanti GD, Sijbers J (2016) Unsupervised retinal vessel segmentation using combined filters. PLoS ONE 11(2):e0149943

    Article  Google Scholar 

  110. Akhavan R, Faez K (2014) A Novel Retinal Blood Vessel Segmentation Algorithm using Fuzzy segmentation. International Journal of Electrical & Computer Engineering (2088–8708), 4(4)

  111. Xie S, Nie H (2013) January. Retinal vascular image segmentation using genetic algorithm Plus FCM clustering. In 2013 Third International conference on intelligent system design and engineering applications (pp. 1225–1228). IEEE

  112. Sopharak A, Uyyanonvara B, Barman S (2009) Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy c-means clustering. sensors, 9(3), pp.2148–2161

  113. Guo J, Zhu W, Shi F, Xiang D, Chen H, Chen X (2017) A framework for classification and segmentation of branch retinal artery occlusion in SD-OCT. IEEE Trans Image Process 26(7):3518–3527

    MathSciNet  Google Scholar 

  114. Sheng B, Li P, Mo S, Li H, Hou X, Wu Q, Qin J, Fang R, Feng DD (2018) Retinal vessel segmentation using minimum spanning superpixel tree detector. IEEE transactions on cybernetics 49(7):2707–2719

    Article  Google Scholar 

  115. Mendonca AM, Campilho A (2006) Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans Med Imaging 25(9):1200–1213

    Article  Google Scholar 

  116. Anzalone A, Bizzarri F, Parodi M, Storace M (2008) A modular supervised algorithm for vessel segmentation in red-free retinal images. Comput Biol Med 38(8):913–922

    Article  Google Scholar 

  117. Primitivo D, Alma R, Erik C, Arturo V, Edgar C, Marco PC, Daniel Z (2019) A hybrid method for blood vessel segmentation in images. Biocybernetics and Biomedical Engineering 39(3):814–824

    Article  Google Scholar 

  118. Chen G, Chen M, Li J, Zhang E (2017) Retina image vessel segmentation using a hybrid CGLI level set method. BioMed research international, 2017

  119. Kusakunniran W, Charoenpanich P, Samunyanoraset P, Suksai S, Karnjanapreechakorn S, Wu Q, Zhang J (2021) Hybrid Learning of Vessel Segmentation in Retinal Images. ECTI Transactions on Computer and Information Technology (ECTI-CIT) 15(1):1–12

    Article  Google Scholar 

  120. Asem MM, Oveisi IS, Janbozorgi M (2018) Blood vessel segmentation in modern wide-field retinal images in the presence of additive Gaussian noise. J Med Imaging (Bellingham). 5(3):031405. https://doi.org/10.1117/1.JMI.5.3.031405. (Epub 2018 Feb 27. PMID: 29531969; PMCID: PMC5827697)

    Article  Google Scholar 

  121. Neto LC et al (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78:182–192

    Article  Google Scholar 

  122. Chakraborthy C, Malhotra P, Gupta S, Koundal D, Zaguia A, Enbeyle W (2022) 2022/03/10, Deep Neural Networks for Medical Image Segmentation, 9580991, 2022.2040–2295, https://doi.org/10.1155/2022/9580991, https://doi.org/10.1155/2022/9580991, Journal of Healthcare Engineering, Hindawi

  123. Soomro TA, Ali A, Jandan NA, Afifi AJ, Irfan M, Alqhtani S, Glowacz A, Alqahtani A, Tadeusiewicz R, Kantoch E, Zheng L (2021) Impact of Novel Image Preprocessing Techniques on Retinal Vessel Segmentation. Electronics 10:2297. https://doi.org/10.3390/electronics10182297

    Article  Google Scholar 

  124. Varghese M, Antony J (2019) Assessment of Macular Pigment Optical Density Using Fundus Reflectometry in Diabetic Patients. Middle East Afr J Ophthalmol. 26(1):2–6. https://doi.org/10.4103/meajo.MEAJO_248_17. (PMID: 31114116; PMCID: PMC6507373)

    Article  Google Scholar 

  125. Pal A, Moorthy MR, Shahina A (2018) "G-eyenet: A convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images." In 2018 25th IEEE international conference on image processing (ICIP), pp. 2775–2779. IEEE, 2018

Download references

Funding

The authors declare that they have competing interests and funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hayati Yassin.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godishala, A., Raj, V., Lai, D.T.C. et al. Survey on retinal vessel segmentation. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19075-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19075-1

Keywords

Navigation