Skip to main content
Log in

Exploring inbetween charts with trajectory-guided sliders for cutout animation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We introduce an interactive tool to intuitively make inbetween charts for cutout character movements (i.e., transitioning from one image to another), inspired by cartoon animators’ techniques. Given several keyframes, this system constructs trajectory-guided sliders that enable users to directly adjust inbetween values on a screen. In addition, these sliders can visualize simple inbetween timings to provide guidance on cartoon-like motions, such as animating “on twos” and “slow-in/out” in the background of the slider. Thus, the users can intuitively explore inbetween charts until they are satisfied. This method is simple enough to easily implement in existing animation-authoring tools. We conduct a user study with novice and amateur users and confirm that the proposed slider (including the guidance function) is effective for manually constructing the inbetween charts envisioned by the users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility Statement

The original data collected during the user study are not publicly available because it contains video and audio of the subjects, but anonymized questionnaire results and character models are available from the corresponding author on reasonable request.

Notes

  1. https://cacani.sg/

  2. https://www.toonboom.com/products/harmony

  3.  https://www.live2d.com/en/

  4. https://www.figma.com/

References

  1. Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible shape interpolation. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques. ACM, New York, NY, USA, pp 157–164, https://doi.org/10.1145/344779.344859

  2. Barnes C, Jacobs DE, Sanders J et al (2008) Video puppetry: A performative interface for cutout animation. ACM Trans Graph (ToG) 27(5):124:1–124:9. https://doi.org/10.1145/1409060.1409077

  3. Baxter W, Ki Anjyo (2006) Latent doodle space. Comput Graph Forum (CGF) 25(3):477–485. https://doi.org/10.1111/j.1467-8659.2006.00967.x

    Article  Google Scholar 

  4. Baxter W, Barla P, Anjyo Ki (2008) Rigid shape interpolation using normal equations. In: Proceedings of the 6th international symposium on non-photorealistic animation and rendering (NPAR). ACM, New York, NY, USA, pp 59–64, https://doi.org/10.1145/1377980.1377993

  5. Baxter W, Barla P, Anjyo K (2009) N-way morphing for 2D animation. Comput Animat Virtual Worlds (CAVW) 20(2–3):79–87. https://doi.org/10.1002/cav.310

    Article  Google Scholar 

  6. Bregler C, Loeb L, Chuang E et al (2002) Turning to the masters: motion capturing cartoons. ACM Trans Graph (ToG) 21(3):399–407. https://doi.org/10.1145/566570.566595

    Article  Google Scholar 

  7. Carvalho L, Marroquim R, Brazil EV (2017) Dilight: Digital light table-inbetweening for 2D animations using guidelines. Comput & Graph (C &G) 65:31–44. https://doi.org/10.1016/j.cag.2017.04.001

    Article  Google Scholar 

  8. Chen R, Weber O, Keren D et al (2013) Planar shape interpolation with bounded distortion. ACM Trans Graph (ToG) 32(4):108:1-108:11. https://doi.org/10.1145/2461912.2461983

    Article  Google Scholar 

  9. Choi B, i Rebera RB, Lewis JP et al (2016) SketchiMo: Sketch-based motion editing for articulated characters. ACM Trans Graph (ToG) 35(4):146:1-146:12. https://doi.org/10.1145/2897824.2925970

    Article  Google Scholar 

  10. Choi MG, Yang K, Igarashi T et al (2012) Retrieval and visualization of human motion data via stick figures. Comput Graph Forum (CGF) 31(7):2057–2065. https://doi.org/10.1111/j.1467-8659.2012.03198.x

    Article  Google Scholar 

  11. Ciccone L, Öztireli C, Sumner RW (2019) Tangent-space optimization for interactive animation control. ACM Trans Graph (ToG) 38(4):101:1-101:10. https://doi.org/10.1145/3306346.3322938

    Article  Google Scholar 

  12. Davis RC, Colwell B, Landay JA (2008) K-sketch: A ’kinetic’ sketch pad for novice animators. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI). ACM, New York, NY, USA, pp 413–422, https://doi.org/10.1145/1357054.1357122

  13. Dragicevic P, Ramos G, Bibliowitcz J, et al (2008) Video browsing by direct manipulation. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI). ACM, New York, NY, USA, pp 237–246, https://doi.org/10.1145/1357054.1357096

  14. Dunbar D, Humphreys G (2006) A spatial data structure for fast poisson-disk sample generation. ACM Trans Graph (ToG) 25(3):503–508. https://doi.org/10.1145/1141911.1141915

    Article  Google Scholar 

  15. Fukusato T, Maejima A (2022) View-dependent deformation for 2.5D cartoon models. IEEE Comput Graph Appl (CG &A) 42(5):66–75. https://doi.org/10.1109/MCG.2022.3174202

    Article  Google Scholar 

  16. Fukusato T, Morishima S (2016) Active comicing for freehand drawing animation. Math Prog Expressive Image Synth III:45–56. https://doi.org/10.1007/978-981-10-1076-7_6

    Article  Google Scholar 

  17. Furukawa S, Fukusato T, Yamaguchi S, et al (2017) Voice animator: Automatic lip-synching in limited animation by audio. In: International conference on advances in computer entertainment (ACE). Springer, Cham, Switzerland, pp 153–171, https://doi.org/10.1007/978-3-319-76270-8_12

  18. Guay M, Ronfard R, Gleicher M et al (2015) Space-time sketching of character animation. ACM Trans Graph (ToG) 34(4):118:1-118:10. https://doi.org/10.1145/2766893

    Article  Google Scholar 

  19. Hornung A, Dekkers E, Kobbelt L (2007) Character animation from 2D pictures and 3D motion data. ACM Trans Graph (ToG) 26(1):1–9. https://doi.org/10.1145/1189762.1189763

    Article  Google Scholar 

  20. Iarussi E, Bousseau A, Tsandilas T (2013) The drawing assistant: Automated drawing guidance and feedback from photographs. In: Proceedings of the 26th annual acm symposium on user interface software and technology (UIST). ACM, New York, USA, pp 183–192, https://doi.org/10.1145/2501988.2501997

  21. Igarashi T, Moscovich T, Hughes JF (2005) As-rigid-as-possible shape manipulation. ACM Trans Graph (ToG) 24(3):1134–1141. https://doi.org/10.1145/1073204.1073323

    Article  Google Scholar 

  22. Kaji S, Hirose S, Sakata S et al (2012) Mathematical analysis on affine maps for 2D shape interpolation. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on computer animation (SCA). Eurographics Association, Goslar Germany, Germany, pp 71–76, http://dl.acm.org/citation.cfm?id=2422356.2422368

  23. Si Kawamoto, Yotsukura T, Anjyo K et al (2008) Efficient lip-synch tool for 3D cartoon animation. Comput Animat Virtual Worlds (CAVW) 19(3–4):247–257. https://doi.org/10.1002/cav.250

    Article  Google Scholar 

  24. Kazi RH, Grossman T, Umetani N, et al (2016) Motion amplifiers: Sketching dynamic illustrations using the principles of 2D animation. In: Proceedings of the 2016 CHI conference on human factors in computing systems (CHI). ACM, New York, NY, USA, pp 4599–4609, https://doi.org/10.1145/2858036.2858386

  25. Kitamura M, Kanamori Y, Mitani J, et al (2013) Motion frame omission for cartoon-like effects. In: Proceedings of international workshop on advanced image technology (IWAIT), Nagoya, Japan, pp 148–152

  26. Koyama Y, Goto M (2018) Optimo: Optimization-guided motion editing for keyframe character animation. In: Proceedings of the 2018 CHI conference on human factors in computing systems (CHI). ACM, New York, NY, USA, pp 1–12, https://doi.org/10.1145/3173574.3173735

  27. Levi Z, Gotsman C (2014) Smooth rotation enhanced as-rigid-as-possible mesh animation. IEEE Trans Visual Comput Graph (TVCG) 21(2):264–277. https://doi.org/10.1109/TVCG.2014.2359463

    Article  Google Scholar 

  28. Maejima A, Kubo H, Shinagawa S et al (2021) Anime character colorization using few-shot learning. In: SIGGRAPH Asia 2021 technical communications. ACM, New York, NY, USA, pp 8:1–8:4

  29. Morimoto Y, Semba T et al (2019) Generating 2.5D character animation by switching the textures of rigid deformation. Int J Asia Digit Art Des 23(2):16–21. https://doi.org/10.20668/adada.23.2_16

    Article  Google Scholar 

  30. Morishima S, Kuriyama S, Kawamoto S, et al (2007) Data-driven efficient production of cartoon character animation. In: ACM SIGGRAPH 2007 sketches. ACM, New York, NY, USA, p 76es, https://doi.org/10.1145/1278780.1278872

  31. Pantoja T (2016) The art of inbetweening: Timing charts. https://www.youtube.com/watch?v=86tqKH3zxuM

  32. Peng Y, Huang Z, Zhao C et al (2021) Sketch-based human motion retrieval via shadow guidance. In: 2021 Nicograph international (NicoInt). IEEE, Tokyo, Japan, pp 42–45, https://doi.org/10.1109/NICOINT52941.2021.00015

  33. Rivers A, Igarashi T, Durand F (2010) 2.5D cartoon models. ACM Trans Graph (ToG) 29(4):59:1-59:7. https://doi.org/10.1145/1833349.1778796

    Article  Google Scholar 

  34. Roberts R, Lewis JP, Anjyo K et al (2019) Optimal and interactive keyframe selection for motion capture. Comput Vis Media (CVMJ) 5(2):171–191. https://doi.org/10.1007/s41095-019-0138-z

    Article  Google Scholar 

  35. Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling. In: Proceedings of eurographics symposium on geometry processing (SGP). The Eurographics Association, Goslar, DEU, pp 109–116, https://doi.org/10.2312/SGP/SGP07/109-116

  36. Su Q, Bai X, Fu H et al (2018) Live sketch: Video-driven dynamic deformation of static drawings. In: Proceedings of the 2018 CHI conference on human factors in computing systems (CHI). ACM, New York, NY, USA, pp 662:1–662:12, https://doi.org/10.1145/3173574.3174236

  37. Sýkora D, Dingliana J, Collins S (2009) As-rigid-as-possible image registration for hand-drawn cartoon animations. In: Proceedings of the 7th international symposium on non-photorealistic animation and rendering (NPAR). ACM, New York, NY, USA, pp 25–33, https://doi.org/10.1145/1572614.1572619

  38. Sỳkora D, Dingliana J, Collins S (2009) Lazybrush: Flexible painting tool for hand-drawn cartoons. Comput Graph Forum (CGF) 28(2):599–608. https://doi.org/10.1111/j.1467-8659.2009.01400.x

    Article  Google Scholar 

  39. Thorne M, Burke D, van de Panne M (2004) Motion doodles: An interface for sketching character motion. ACM Trans Graph (ToG) 23(3):424–431. https://doi.org/10.1145/1015706.1015740

    Article  Google Scholar 

  40. Wang J, Drucker SM, Agrawala M et al (2006) The cartoon animation filter. ACM Trans Graph (ToG) 25(3):1169–1173. https://doi.org/10.1145/1141911.1142010

    Article  Google Scholar 

  41. Whited B, Noris G, Simmons M et al (2010) Betweenit: An interactive tool for tight inbetweening. Comput Graph Forum (CGF) 29(2):605–614. https://doi.org/10.1111/j.1467-8659.2009.01630.x

    Article  Google Scholar 

  42. Willett NS, Li W, Popovic J et al (2017a) Secondary motion for performed 2D animation. In: Proceedings of the 30th annual acm symposium on user interface software and technology (UIST). ACM, New York, NY, USA, pp 97–108, https://doi.org/10.1145/3126594.3126641

  43. Willett NS, Li W, Popovic J et al (2017b) Triggering artwork swaps for live animation. In: Proceedings of the 30th annual acm symposium on user interface software and technology (UIST). ACM, New York, NY, USA, pp 85–95, https://doi.org/10.1145/3126594.3126596

  44. Willett NS, Shin HV, Jin Z et al (2020) Pose2pose: Pose selection and transfer for 2D character animation. In: Proceedings of the 25th international conference on intelligent user interfaces (IUI). ACM, New York, NY, USA, pp 88–99, https://doi.org/10.1145/3377325.3377505

  45. Xing J, Wei LY, Shiratori T et al (2015) Autocomplete hand-drawn animations. ACM Trans Graph (ToG) 34(6):169:1-169:11. https://doi.org/10.1145/2816795.2818079

    Article  Google Scholar 

  46. Xing J, Kazi RH, Grossman T et al (2016) Energy-brushes: Interactive tools for illustrating stylized elemental dynamics. In: Proceedings of the 29th annual symposium on user interface software and technology (UIST). ACM, New York, NY, USA, pp 755–766, https://doi.org/10.1145/2984511.2984585

Download references

Acknowledgements

This research was supported by Waseda University Grant for Special Research Projects (Project number: 2023Q-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Fukusato.

Ethics declarations

Conflicts of interest

Akinobu Maejima and Tatsuo Yotsukura are employees of OLM Digital, Inc. and IMAGICA GROUP Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukusato, T., Maejima, A., Igarashi, T. et al. Exploring inbetween charts with trajectory-guided sliders for cutout animation. Multimed Tools Appl 83, 44581–44594 (2024). https://doi.org/10.1007/s11042-023-17354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17354-x

Keywords

Navigation