Skip to main content
Log in

Anterior mediastinal nodular lesion segmentation from chest computed tomography imaging using UNet based neural network with attention mechanisms

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Automated detection of anterior mediastinal nodular lesions (AMLs) has significance for clinical usage as it is challenging for radiologists to accurately identify AMLs from chest computed tomography (CT) imaging due to various factors, including poor resolution, variations in intensity and the similarity of the AMLs to other tissues. To assist radiologists in AML detection from chest CT imaging, a UNet-based computer-aided detection (CADe) system is proposed to segment AMLs from slice images of the chest CT scans. The proposed network adopts a modified UNet architecture. To guide the proposed network to selectively focus on AMLs and potentially disregard others in the image, different attention mechanisms are utilized in the proposed network, including the self-attention mechanism and the convolutional block attention module (CBAM). The proposed network was trained and evaluated on 180 chest CT scans which consist of 180 AMLs. 90 AMLs were identified as thymic cysts, and 90 AMLs were diagnosed as thymoma. The proposed network achieved an average dice similarity coefficient (DSC) of 93.23 with 5-fold cross-validation, for which the mean Intersection over Union (IoU), sensitivity and specificity were 90.29, 93.98 and 95.68 respectively. Our method demonstrated an improved segmentation performance over state-of-the-art segmentation networks, including UNet, ResUNet, TransUNet and UNet++. The proposed network employing attention mechanisms exhibited a promising result for segmenting AMLs from chest CT imaging and could be used to automate the AML detection process for achieving improved diagnostic reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, Lammers JWJ, Weenink C, Yousaf-Khan U, Horeweg N, van’t Westeinde S, Prokop M, Mali WP, Mohamed Hoesein FA, van Ooijen PM, Aerts JG, den Bakker MA, Thunnissen E, Verschakelen J, Vliegenthart R, Walter JE, ten Haaf K, Groen HJ, Oudkerk M (2020) Reduced lung-cancer mortality with volume ct screening in a randomized trial. N Engl J Med 382(6):503–513. https://doi.org/10.1056/nejmoa1911793

  2. Yoon SH, Choi SH, Kang CH, Goo JM (2018) Incidental anterior mediastinal nodular lesions on chest CT in asymptomatic subjects. J Thorac Oncol 13(3):359–366. https://doi.org/10.1016/j.jtho.2017.11.124

    Article  Google Scholar 

  3. Munden RF, Carter BW, Chiles C, MacMahon H, Black WC, Ko JP, McAdams HP, Rossi SE, Leung AN, Boiselle PM, Kent MS, Brown K, Dyer DS, Hartman TE, Goodman EM, Naidich DP, Kazerooni EA, Berland LL, Pandharipande PV (2018) Managing incidental findings on thoracic CT: Mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J Am Coll Radiol 15(8):1087–1096. https://doi.org/10.1016/j.jacr.2018.04.029

  4. Bailey CR, Bailey AM, McKenney AS, Weiss CR (2022) Understanding and appreciating burnout in radiologists. Radiographics 42(5):E137–E139. https://doi.org/10.1148/rg.220037

    Article  Google Scholar 

  5. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, Kim L, Summers RM (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging 35(5):1170–1181. https://doi.org/10.1109/TMI.2015.2482920

    Article  Google Scholar 

  6. Castro-Zunti R, Park EH, Choi Y, Jin GY, Bum Ko S (2020) Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Comput Med Imaging Graph 82:101–718. https://doi.org/10.1016/j.compmedimag.2020.101718

  7. Haghanifar A, Majdabadi MM, Choi Y, Deivalakshmi S, Ko S (2022) COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning. Multimed Tools Appl 81(21):30615–30645. https://doi.org/10.1007/s11042-022-12156-z

    Article  Google Scholar 

  8. Jung W, Cho S, Yum S, Lee YK, Kim K, Jheon S (2020) Differentiating thymoma from thymic cyst in anterior mediastinal abnormalities smaller than 3 cm. J Thor Dis 12(4):1357–1365. https://doi.org/10.21037/jtd.2020.02.14

    Article  Google Scholar 

  9. Sandor T, Metcalf D, Kim YJ (1991) Segmentation of brain CT images using the concept of region growing. Int J Bio-Med Comput 29(2):133–147. https://doi.org/10.1016/0020-7101(91)90004-X

    Article  Google Scholar 

  10. Ye X, Beddoe G, Slabaugh G (2010) Automatic graph cut segmentation of lesions in CT using mean shift superpixels. International Journal of Biomedical Imaging 2010. https://doi.org/10.1155/2010/983963

  11. Hemalatha R, Thamizhvani T, Dhivya AJA, Joseph JE, Babu B, Chandrasekaran R (2018) Active contour based segmentation techniques for medical image analysis. Medical and Biological Image Analysis. https://doi.org/10.5772/intechopen.74576

  12. Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. arXiv:1411.4038

  13. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. arXiv:1505.04597

  14. Aresta G, Jacobs C, Araújo T, Cunha A, Ramos I, van Ginneken B, Campilho A (2019) iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-48004-8

    Article  Google Scholar 

  15. Usman M, Lee BD, Byon SS, Kim SH, Il Lee B, Shin YG (2020) Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-69817-y

  16. Oda H, Bhatia KK, Roth HR, Oda M, Kitasaka T, Iwano S, Homma H, Takabatake H, Mori M, Natori H, Schnabel JA, Mori K (2018) Dense volumetric detection and segmentation of mediastinal lymph nodes in chest CT images. Proc SPIE 10575:1. https://doi.org/10.1117/12.2287066

    Article  Google Scholar 

  17. Nayan AA, Kijsirikul B, Iwahori Y (2022) Mediastinal lymph node detection and segmentation using deep learning. IEEE Access 10:89289–89307. https://doi.org/10.1109/ACCESS.2022.3198996

    Article  Google Scholar 

  18. Huang S, Han X, Fan J, Chen J, Du L, Gao W, Liu B, Chen Y, Liu X, Wang Y, Ai D, Ma G, Yang J (2021) Anterior mediastinal lesion segmentation based on two-stage 3D ResUNet with attention gates and lung segmentation. FronT Oncol 10:3290. https://doi.org/10.3389/fonc.2020.618357

    Article  Google Scholar 

  19. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention U-Net: Learning where to look for the pancreas. arXiv:1804.03999

  20. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. arXiv:1706.03762

  21. Chen J, Lu Y, Yu Q, Luo X, Adeli E, Wang Y, Lu L, Yuille AL, Zhou Y (2021) TransUNet: Transformers make strong encoders for medical image segmentation. arXiv:2102.04306

  22. Zhang DJ, Li K, Wang Y, Chen Y, Chandra S, Qiao Y, Liu L, Shou MZ (2022) MorphMLP: An efficient MLP-like backbone for spatial-temporal representation learning. arXiv:2111.12527

  23. Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett 15(5):749–753. https://doi.org/10.1109/LGRS.2018.2802944

    Article  Google Scholar 

  24. Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, Liang J (2018) Unet++: A nested u-net architecture for medical image segmentation. Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics) 11045 LNCS, pp 3–11. https://doi.org/10.1007/978-3-030-00889-5_1

  25. Choe J, Lee SM, Ahn Y, Kim CH, Seo JB, Lee HY (2022) Characteristics and outcomes of anterior mediastinal cystic lesions diagnosed on chest MRI: implications for management of cystic lesions. Insights Imaging 13(1):1–12. https://doi.org/10.1186/s13244-022-01275-8

    Article  Google Scholar 

  26. Ackman JB, Chintanapakdee W, Mendoza DP, Price MC, Lanuti M, Shepard JAO (2021) Longitudinal CT and MRI characteristics of unilocular thymic cysts. Radiol 301(2):443–454. https://doi.org/10.1148/radiol.2021203593

    Article  Google Scholar 

  27. Kikinis R, Pieper SD, Vosburgh KG (2014) 3D slicer: A Platform for subject-specific image analysis, visualization, and clinical support. In: Intraoperative imaging and image-guided therapy, pp 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19

  28. Wang W, Xie E, Li X, Fan D, Song K, Liang D, Lu T, Luo P, Shao L (2021) PVTv2: Improved baselines with pyramid vision transformer. arXiv:2106.13797

  29. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv:1607.06450

  30. Yu F, Koltun V (2016) Multi-scale context aggregation by dilated convolutions. In: 4th International Conference on Learning Representations, ICLR 2016 - Conference track proceedings . arXiv:1511.07122

  31. Woo S, Park J, Lee JY, Kweon IS (2018) CBAM: Convolutional block attention module. Lecture Notes in Computer Science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 11211 LNCS, pp 3–19. https://doi.org/10.1007/978-3-030-01234-2_1

  32. Hu J, Shen L, Albanie S, Sun G, Wu E (2020) Squeeze-and-excitation networks. IEEE Tran Pattern Anal Mach Intell 42(8):2011–2023. https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  33. Milletari F, Navab N, Ahmadi SA (2016) V-Net: Fully convolutional neural networks for volumetric medical image segmentation, pp 565–571. https://doi.org/10.1109/3DV.2016.79

  34. Tomar NK, Shergill A, Rieders B, Bagci U, Jha D (2022) Transresu-net: Transformer based resu-net for real-time colonoscopy polyp segmentation. arXiv:2206.08985

  35. Tong G, Li Y, Chen H, Zhang Q, Jiang H (2018) Improved U-NET network for pulmonary nodules segmentation. Optik 174:460–469. https://doi.org/10.1016/j.ijleo.2018.08.086

    Article  Google Scholar 

  36. Sui H, Liu L, Li X, Zuo P, Cui J, Mo Z (2019) CT-based radiomics features analysis for predicting the risk of anterior mediastinal lesions. J Thor Dis 11(5):1809–1818. https://doi.org/10.21037/jtd.2019.05.32

    Article  Google Scholar 

  37. Yang L, Cai W, Yang X, Zhu H, Liu Z, Wu X, Lei Y, Zou J, Zeng B, Tian X, Zhang R, Luo H, Zhu Y (2020) Development of a deep learning model for classifying thymoma as Masaoka-Koga stage I or II via preoperative CT images. Annals Trans Med 8(6):287–287. https://doi.org/10.21037/atm.2020.02.183

    Article  Google Scholar 

  38. Liu Z, Zhu Y, Yuan Y, Yang L, Wang K, Wang M, Yang X, Wu X, Tian X, Zhang R, Shen B, Luo H, Feng H, Feng S, Ke Z (2021) 3D densenet deep learning based preoperative computed tomography for detecting myasthenia gravis in patients with thymoma. Frontiers in Oncology 11. https://doi.org/10.3389/fonc.2021.631964

  39. Linsley D, Kim J, Veerabadran V, Serre T (2018) Learning long-range spatial dependencies with horizontal gated-recurrent units. arXiv:1805.08315

  40. Setio AAA, Ciompi F, Litjens G, Gerke P, Jacobs C, Van Riel SJ, Wille MMW, Naqibullah M, Sanchez CI, Van Ginneken B (2016) Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 35(5):1160–1169. https://doi.org/10.1109/TMI.2016.2536809

    Article  Google Scholar 

  41. ...Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, Zhao B, Aberle DR, Henschke CI, Hoffman EA, Kazerooni EA, MacMahon H, Van Beek EJ, Yankelevitz D, Biancardi AM, Bland PH, Brown MS, Engelmann RM, Laderach GE, Max D, Pais RC, Qing DP, Roberts RY, Smith AR, Starkey A, Batra P, Caligiuri P, Farooqi A, Gladish GW, Jude CM, Munden RF, Petkovska I, Quint LE, Schwartz LH, Sundaram B, Dodd LE, Fenimore C, Gur D, Petrick N, Freymann J, Kirby J, Hughes B, Vande Casteele A, Gupte S, Sallam M, Heath MD, Kuhn MH, Dharaiya E, Burns R, Fryd DS, Salganicoff M, Anand V, Shreter U, Vastagh S, Croft BY, Clarke LP (2011) The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Med Phys 38(2):915–931. https://doi.org/10.1118/1.3528204

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Department of Electrical and Computer Engineering at the University of Saskatchewan for their financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Bum Ko.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi Wang and Won Gi Jeong contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jeong, W.G., Zhang, H. et al. Anterior mediastinal nodular lesion segmentation from chest computed tomography imaging using UNet based neural network with attention mechanisms. Multimed Tools Appl 83, 45969–45987 (2024). https://doi.org/10.1007/s11042-023-17210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17210-y

Keywords

Navigation