Skip to main content
Log in

Efficient community-based influence maximization in large-scale social networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The Influence Maximization problem (IMP) is a fundamental algorithmic challenge that involves selecting a set of k users, known as the seed set, from a social media network to maximize the expected number of influenced users or influence spread. In recent years, Influence maximization has been extensively studied due to its numerous applications in marketing and other domains. However, many existing algorithms neglect the impact of communities on influence maximization, and some other methods suffer from scalability issues and time-consuming computations. In this paper, we propose a fast, and scalable algorithm called Community based Influential maximization (CB-IM) to address these limitations. This method leverages the community structure of the network to select k users, thus maximizing the influence spread. The CB-IM algorithm comprises two main components for influence maximization: (1) seed selection and (2) local community spreading. In the seed selection phase, we extract seed nodes from communities identified through a community detection algorithm. To effectively reduce computational complexity and distribute seed nodes across communities, we carefully select meaningful communities. The second phase involves the propagation of influence within independent communities. In this step, the final seed nodes are strategically distributed to facilitate local spreading through simple paths within the communities. To evaluate the performance of proposed method, we conducted a series of experiments using real networks. The proposed CB-IM algorithm demonstrated superior performance over other algorithms in terms of influence spread and running time, highlighting its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at (http://snap.stanford.edu/data/)

Code availability

All code for data analysis associated with the current submission is available from the corresponding author upon reasonable request.

References

  1. Tong G, Wu W, Tang S, Du DZ (2017) Adaptive Influence Maximization in Dynamic Social Networks. IEEE/ACM Trans Netw 25(1):112–125. https://doi.org/10.1109/TNET.2016.2563397

    Article  Google Scholar 

  2. Wang F, Jiang W, Li X, Wang G (2018) Maximizing positive influence spread in online social networks via fluid dynamics. Futur Gener Comput Syst 86:1491–1502. https://doi.org/10.1016/j.future.2017.05.050

    Article  Google Scholar 

  3. Domingos P, Richardson M (2001) Mining the network value of customers. Proc Seventh ACM SIGKDD Int Conf Knowl Discov Data Min:57–66. https://doi.org/10.1145/502512.502525

  4. Dorogovtsev SN, Goltsev AV, Mendes JFF (2008) Critical phenomena in complex networks. Rev Mod Phys 80(4):1275–1335. https://doi.org/10.1103/RevModPhys.80.1275

    Article  Google Scholar 

  5. Venunath M, Sujatha P, Koti P, Dharavath S (2023) Influence Maximization and Online Social Capital for Entrepreneurs: Leveraging Social Networks to Achieve Business Goals, in Social Capital in the Age of Online Networking: Genesis, Manifestations, and Implications, IGI Global, 128–145. https://doi.org/10.4018/978-1-6684-8953-6.ch010

  6. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438(7066):355–359. https://doi.org/10.1038/nature04153

    Article  Google Scholar 

  7. Tang Y, Shi Y, Xiao X (2015) Influence Maximization in Near-Linear Time: A Martingale Approach. 1539–1554. https://doi.org/10.1145/2723372.2723734

  8. Zhang H, Mishra S, Thai MT (2014) Recent advances in information diffusion and influence maximization of complex social networks, Opportunistic Mob Soc Netw. 37–70. https://doi.org/10.1201/b17231

  9. Garas A, Argyrakis P, Rozenblat C, Tomassini M, Havlin S (2010) Worldwide spreading of economic crisis. New J Phys. 12: https://doi.org/10.1088/1367-2630/12/11/113043

  10. Borge-Holthoefer J, Moreno Y (2012) Absence of influential spreaders in rumor dynamics. Phys Rev E - Stat Nonlinear, Soft Matter Phys 85(2):1–5. https://doi.org/10.1103/PhysRevE.85.026116

    Article  Google Scholar 

  11. Reppas AI, Lawyer G (2012) Low k-shells identify bridge elements critical to disease flow in small-world networks. AIP Conf Proc 1479(1):1426–1429. https://doi.org/10.1063/1.4756427

    Article  Google Scholar 

  12. Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B 26(4):521–529. https://doi.org/10.1140/epjb/e20020122

    Article  Google Scholar 

  13. Budak C, Agrawal D, El Abbadi A (2011) Limiting the spread of misinformation in social networks,” Proc. 20th Int. Conf. World Wide Web, WWW 2011, pp. 665–674, https://doi.org/10.1145/1963405.1963499

  14. Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: Combining scalability and efficiency with opinion-aware models, Proc ACM SIGMOD Int Conf Manag Data, vol. 26-June-20, pp. 743–758, https://doi.org/10.1145/2882903.2882929

  15. Wu P, Pan L (2017) Scalable influence blocking maximization in social networks under competitive independent cascade models. Comput Netw 123:38–50. https://doi.org/10.1016/j.comnet.2017.05.004

    Article  Google Scholar 

  16. Feng TSZ, Xu X, Yuruk N (2007) A novel similarity-based modularity function for graph partitioning. Proc 9th Int Conf Data Warehous. Knowl Discov. 385–396

  17. Teng YW, Tai CH, Yu PS, Chen MS (2018) Revenue maximization on the multi-grade product, SIAM Int Conf Data Mining, SDM 576–584, 2018, https://doi.org/10.1137/1.9781611975321.65

  18. Rosenquist JN, Murabito J (2010) Article annals of internal medicine the spread of alcohol consumption behavior in a large, Ann Intern Med, vol. 152, no. 7, p. 426, [Online]. Available: http://www.annals.org/content/152/7/426.short

  19. Ma H, Yang H, Lyu MR, King I (2008) Mining social networks using heat diffusion processes for marketing candidates selection. Int Conf Inf Knowl Manag Proc:233–242. https://doi.org/10.1145/1458082.1458115

  20. Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 137–146. https://doi.org/10.1145/956750.956769

  21. Pei S, Morone F, Makse HA (2018) Theories for Influencer Identification in Complex Networks, 125–148, https://doi.org/10.1007/978-3-319-77332-2_8

  22. Kitsak M et al (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893. https://doi.org/10.1038/nphys1746

    Article  Google Scholar 

  23. Venunath M, Sujatha P, Dharavath S, Natarajasivan D, Koti P (2023) Efficient method for identifying prominent supplier in large-scale healthcare information networks in Medicare, Soft Comput, vol. 7, https://doi.org/10.1007/s00500-023-08391-7

  24. Tanınmış K, Aras N, Altınel IK (2019) Influence maximization with deactivation in social networks. Eur J Oper Res 278(1):105–119. https://doi.org/10.1016/j.ejor.2019.04.010

    Article  MathSciNet  Google Scholar 

  25. Li D, Wang X, Huang P (2017) A fractal growth model: Exploring the connection pattern of hubs in complex networks. Phys A Stat Mech its Appl 471:200–211. https://doi.org/10.1016/j.physa.2016.12.038

    Article  Google Scholar 

  26. Li Y, Chen W, Wang Y, Zhang ZL (2013) Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships, WSDM 2013 - Proc 6th ACM Int Conf Web Search Data Min., pp. 657–666, https://doi.org/10.1145/2433396.2433478

  27. Chen W, Wang C, Wang Y (2010) Scalable Influence Maximization for Prevalent Viral Marketing in Large-Scale Social Networks, in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’10. New York, NY, USA: Association for Computing Machinery, 1029–1038. https://doi.org/10.1145/1835804.1835934

  28. Saito K, Kimura M, Ohara K, Motoda H (2012) Efficient discovery of influential nodes for SIS models in social networks. Knowl Inf Syst 30(3):613–635. https://doi.org/10.1007/s10115-011-0396-2

    Article  Google Scholar 

  29. Wen S, Haghighi MS, Chen C, Xiang Y, Zhou W, Jia W (2015) A sword with two edges: Propagation studies on both positive and negative information in online social networks. IEEE Trans Comput 64(3):640–653. https://doi.org/10.1109/TC.2013.2295802

    Article  MathSciNet  Google Scholar 

  30. Leskovec J, Krause A, Guestrin C, Faloutsos C, Vanbriesen J, Glance N (2007) Cost-effective outbreak detection in networks. Proc ACM SIGKDD Int Conf Knowl Discov Data Min:420–429. https://doi.org/10.1145/1281192.1281239

  31. Wang Y, Feng X (2009) A potential-based node selection strategy for influence maximization in a social network, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5678 LNAI. 350–361. https://doi.org/10.1007/978-3-642-03348-3_34

  32. Wang KXY, Cong G, Song G (2010) Community-based Greedy Algorithm for Mining Top-K Influential Nodes in Mobile Social Networks Categories and Subject Descriptors, Proc. 16th ACM SIGKDD Int Conf Knowl Discov data Min. 1039–1048

  33. Goyal A, Lu W, Lakshmanan LVS (2011) SIMPATH: An efficient algorithm for influence maximization under the Linear Threshold model, Proc - IEEE Int Conf Data Mining, ICDM. 211–220, 10.1109/ICDM.2011.132

  34. Kimura M, Saito K (2006) Tractable models for information diffusion in social networks, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4213 LNAI. 259–271, https://doi.org/10.1007/11871637_27

  35. Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks, Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 199–207. https://doi.org/10.1145/1557019.1557047

  36. Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model, Proc - IEEE Int. Conf. Data Mining, ICDM. 88–97. https://doi.org/10.1109/ICDM.2010.118

  37. Jung K, Heo W, Chen W (2012) IRIE: Scalable and robust influence maximization in social networks, Proc - IEEE Int Conf Data Mining, ICDM. 918–923. https://doi.org/10.1109/ICDM.2012.79

  38. Kim J, Kim SK, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks?, Proc. - Int. Conf. Data Eng., 266–277, https://doi.org/10.1109/ICDE.2013.6544831.

  39. Goyal A, Lu W, Lakshmanan LVS (2011) CELF++: Optimizing the greedy algorithm for influence maximization in social networks, Proceedings of the 20th International Conference Companion on World Wide Web, WWW 47–48, 2011. https://doi.org/10.1145/1963192.1963217

  40. Arora Akhil SR, Galhotra S (2017) Debunking the Myths of Influence Maximization: An In-Depth Benchmarking Study, ACM

  41. Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) StaticGreedy: Solving the scalability-accuracy dilemma in influence maximization, Int. Conf Inf Knowl Manag Proc, no. March 2014. 509–518. https://doi.org/10.1145/2505515.2505541

  42. Tang Y (2014) In fl uence Maximization : Near-Optimal Time Complexity Meets Practical Ef fi ciency, 75–86

  43. Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-Stare: Optimal sampling algorithms for viral marketing in billion-scale networks, Proc ACM SIGMOD Int Conf Manag Data, vol. 26-June-20. 695–710. https://doi.org/10.1145/2882903.2915207

  44. Singh SS, Kumar A, Singh K, Biswas B (2019) LAPSO-IM: A learning-based influence maximization approach for social networks. Appl Soft Comput J 82:105554. https://doi.org/10.1016/j.asoc.2019.105554

    Article  Google Scholar 

  45. Chen W, Wang C, Wang Y (2010) Scalable Influence Maximization for Prevalent Viral, 16th ACM SIGKDD Int Conf Knowl Discov data Min. 1029–1038

  46. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2(1):113–120. https://doi.org/10.1080/0022250X.1972.9989806

    Article  Google Scholar 

  47. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603. https://doi.org/10.1007/BF02289527

    Article  MathSciNet  Google Scholar 

  48. Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) K-core organization of complex networks. Phys Rev Lett 96(4):3–6. https://doi.org/10.1103/PhysRevLett.96.040601

    Article  Google Scholar 

  49. Seidman SB (1983) Network structure and minimum degree. Soc Networks 5(3):269–287. https://doi.org/10.1016/0378-8733(83)90028-X

    Article  MathSciNet  Google Scholar 

  50. S. Publications (2016) A Set of Measures of Centrality Based on Betweenness Author ( s ): Linton C . Freeman Published by : American Sociological Association Stable URL : http://www.jstor.org/stable/3033543, 40(1):35–41

  51. Malliaros FD, Rossi MEG, Vazirgiannis M (2016) Locating influential nodes in complex networks, Sci Rep. 6(January):1–10. https://doi.org/10.1038/srep19307

  52. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine BT - Computer Networks and ISDN Systems, Comput Networks ISDN Syst. 30(1–7):107–117. [Online]. Available: https://doi.org/10.1016/S0169-7552(98)00110-Xhttp://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=6&SID=X1pOWPMuSmOv1SlwJ6f&page=1&doc=2

  53. Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Networks 23(3):191–201. https://doi.org/10.1016/S0378-8733(01)00038-7

    Article  Google Scholar 

  54. Ahajjam S, Badir H (2018) Identification of influential spreaders in complex networks using HybridRank algorithm. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-30310-2

    Article  Google Scholar 

  55. Li Z, Ren T, Ma X, Liu S, Zhang Y, Zhou T (2019) Identifying influential spreaders by gravity model. Sci Rep 9(1):1–7. https://doi.org/10.1038/s41598-019-44930-9

    Article  Google Scholar 

  56. Lawyer G (2015) Understanding the influence of all nodes in a network. Sci Rep 5:1–9. https://doi.org/10.1038/srep08665

    Article  Google Scholar 

  57. Morone F, Makse HA (2015) Influence maximization in complex networks through optimal percolation. Nature 524(7563):65–68. https://doi.org/10.1038/nature14604

    Article  Google Scholar 

  58. Morone F, Min B, Bo L, Mari R, Makse HA (2016) Collective Influence Algorithm to find influencers via optimal percolation in massively large social media. Sci Rep 6(May):1–11. https://doi.org/10.1038/srep30062

  59. Cordasco G, Gargano L, Rescigno AA (2019) Active influence spreading in social networks. Theor Comput Sci 764:15–29. https://doi.org/10.1016/j.tcs.2018.02.024

    Article  MathSciNet  Google Scholar 

  60. Zhang JX, Chen DB, Dong Q, Zhao ZD (2016) Identifying a set of influential spreaders in complex networks. Sci Rep 6(May):1–10. https://doi.org/10.1038/srep27823

  61. Kempe D, Kleinberg J, Tardos É (2015) Maximizing the spread of influence through a social network. Theory Comput 11:105–147. https://doi.org/10.4086/toc.2015.v011a004

    Article  MathSciNet  Google Scholar 

  62. Kleinberg J (2007) Cascading behavior in networks: algorithmic and economic issues, vol. 9780521872. https://doi.org/10.1017/CBO9780511800481.015

  63. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86(14):3200–3203. https://doi.org/10.1103/PhysRevLett.86.3200

    Article  Google Scholar 

  64. Motter AE (2004) Cascade control and defense in complex networks. Phys Rev Lett 93(9):1–4. https://doi.org/10.1103/PhysRevLett.93.098701

    Article  MathSciNet  Google Scholar 

  65. Colizza V, Pastor-Satorras R, Vespignani A (2007) Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat Phys 3(4):276–282. https://doi.org/10.1038/nphys560

    Article  Google Scholar 

  66. Lü L, Zhang YC, Yeung CH, Zhou T (2011) Leaders in social networks, the delicious case. PLoS One 6(6). https://doi.org/10.1371/journal.pone.0021202

  67. Bae J, Kim S (2014) Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys A Stat Mech its Appl 395:549–559. https://doi.org/10.1016/j.physa.2013.10.047

    Article  MathSciNet  Google Scholar 

  68. Bauer F, Lizier JT (2012) Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: A walk counting approach, Epl. 99(6). https://doi.org/10.1209/0295-5075/99/68007

  69. Work R (2016) Social Community Detection 5.1, https://doi.org/10.1007/978-3-030-10767-3

  70. Venunath M, Sujatha P, Koti P (2023) Identifying Top-N Influential Nodes in Large Complex Networks Using Network Structure. In: Buyya R, Hernandez SM, Kovvur RMR, Sarma TH (eds) Computational Intelligence and Data Analytics. Springer Nature Singapore, Singapore, pp 597–607

    Chapter  Google Scholar 

  71. Williams D (1991) Probability with Martingales. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511813658

    Book  Google Scholar 

  72. Malliaros FD, Vazirgiannis M (2013) Clustering and community detection in directed networks: A survey. Phys Rep 533(4):95–142. https://doi.org/10.1016/j.physrep.2013.08.002

    Article  MathSciNet  Google Scholar 

  73. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  74. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks, Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top 70(6):6. https://doi.org/10.1103/PhysRevE.70.066111

  75. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 10:2008. https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  76. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764. https://doi.org/10.1038/nature09182

    Article  Google Scholar 

  77. Pinar Y, Gungor T, Gurgen F, Can O, Iscis 2005. 2005

  78. Ochieng PJ, Kusuma WA, Haryanto T (2017) Detection of protein complex from protein-protein interaction network using Markov clustering. J Physics: Conference Series 835(1). https://doi.org/10.1088/1742-6596/835/1/012001

  79. Kernighan BW, Lin S (1970) An Efficient Heuristic Procedure for Partitioning Graphs. Bell Syst Tech J 49(2):291–307. https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

    Article  Google Scholar 

  80. Lin CC, Kang JR, Chen JY (2015) An integer programming approach and visual analysis for detecting hierarchical community structures in social networks. Inf Sci (Ny) 299(December):296–311. https://doi.org/10.1016/j.ins.2014.12.009

  81. Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E - Stat Nonlinear, Soft Matter Phys 76(3):1–11. https://doi.org/10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  82. Parés F et al (2018) Fluid communities: A competitive, scalable and diverse community detection algorithm. Stud Comput Intell 689:229–240. https://doi.org/10.1007/978-3-319-72150-7_19

    Article  Google Scholar 

  83. Bu Z, Li HJ, Zhang C, Cao J, Li A, Shi Y (2020) Graph K-means Based on Leader Identification, Dynamic Game, and Opinion Dynamics. IEEE Trans Knowl Data Eng 32(7):1348–1361. https://doi.org/10.1109/TKDE.2019.2903712

    Article  Google Scholar 

  84. Žalik KR, Žalik B (2018) Memetic algorithm using node entropy and partition entropy for community detection in networks, Inf Sci (Ny) 445–446(June):38–49. https://doi.org/10.1016/j.ins.2018.02.063

  85. Hu Y, Yang B, Wong HS (2016) A weighted local view method based on observation over ground truth for community detection, Inf Sci (Ny) 355–356:37–57, https://doi.org/10.1016/j.ins.2016.03.028

  86. Liu Z, Ma Y (2019) A divide and agglomerate algorithm for community detection in social networks. Inf Sci (Ny) 482:321–333. https://doi.org/10.1016/j.ins.2019.01.028

  87. You X, Ma Y, Liu Z (2020) A three-stage algorithm on community detection in social networks. Knowledge-Based Syst 187:104822. https://doi.org/10.1016/j.knosys.2019.06.030

    Article  Google Scholar 

  88. Srinivas S, Rajendran C (2019) Community detection and influential node identification in complex networks using mathematical programming. Expert Syst Appl 135:296–312. https://doi.org/10.1016/j.eswa.2019.05.059

    Article  Google Scholar 

  89. Khomami MMD, Rezvanian A, Meybodi MR (2016) Distributed learning automata-based algorithm for community detection in complex networks. Int J Mod Phys B 30(8):1–20. https://doi.org/10.1142/S0217979216500429

    Article  MathSciNet  Google Scholar 

  90. Staudt CL, Meyerhenke H (2016) Engineering Parallel Algorithms for Community Detection in Massive Networks. IEEE Trans Parallel Distrib Syst 27(1):171–184. https://doi.org/10.1109/TPDS.2015.2390633

    Article  Google Scholar 

  91. Pan Y, Li DH, Liu JG, Liang JZ (2010) Detecting community structure in complex networks via node similarity. Phys A Stat Mech its Appl 389(14):2849–2857. https://doi.org/10.1016/j.physa.2010.03.006

    Article  Google Scholar 

  92. Ahajjam S, El Haddad M, Badir H (2018) A new scalable leader-community detection approach for community detection in social networks. Soc Networks 54(July):41–49. https://doi.org/10.1016/j.socnet.2017.11.004

  93. Sheng J et al (2019) Community detection based on human social behavior. Phys A Stat Mech its Appl 531:121765. https://doi.org/10.1016/j.physa.2019.121765

    Article  Google Scholar 

  94. Ma T, Liu Q, Cao J, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2020) LGIEM: Global and local node influence based community detection. Futur Gener Comput Syst 105:533–546. https://doi.org/10.1016/j.future.2019.12.022

    Article  Google Scholar 

  95. Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top 68(6):1–4. https://doi.org/10.1103/PhysRevE.68.065103

    Article  Google Scholar 

  96. Iamnitchi A (2002) Mapping the, no. February

  97. Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1). https://doi.org/10.1145/1217299.1217301

  98. Rameshkumar K, Suresh RK, Mohanasundaram KM (2005) Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makespan. Lect Notes Comput Sci 3612(PART III):572–581. https://doi.org/10.1007/11539902_70

  99. Singh SS, Singh K, Kumar A, Biswas B (2020) ACO-IM: maximizing influence in social networks using ant colony optimization. Soft Comput 24(13):10181–10203. https://doi.org/10.1007/s00500-019-04533-y

    Article  Google Scholar 

  100. Aghaee Z, Kianian S (2020) Efficient influence spread estimation for influence maximization. Soc Netw Anal Min 10(1):81. 10.1007/s13278-020-00694-z

  101. Tang J, Zhang R, Wang P, Zhao Z, Fan L, Liu X (2020) A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks. Knowledge-Based Syst 187: https://doi.org/10.1016/j.knosys.2019.07.004

  102. Friedman M (1937) The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J Am Stat Assoc 32(200):675–701. https://doi.org/10.1080/01621459.1937.10503522

    Article  Google Scholar 

  103. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

First author: Conceptualization, problem statement, Data curation, Formal analysis, Methodology, Resources, Software, Validation, Visualization, Writing - original draft. The second author, Supervision, Investigation, Resources for the research. Other authors supported in Formal analysis, Methodology, Resources, Software, Validation, Visualization, review & editing.

Corresponding author

Correspondence to M. Venunath.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venunath, M., Sujatha, P., Koti, P. et al. Efficient community-based influence maximization in large-scale social networks. Multimed Tools Appl 83, 44397–44424 (2024). https://doi.org/10.1007/s11042-023-17025-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17025-x

Keywords

Navigation