Skip to main content
Log in

Fractional wavelet filter based low memory coding for hyperspectral image sensors

Multimedia Tools and Applications Aims and scope Submit manuscript

Cite this article

Abstract

In the present study, a novel low memory coding algorithm for lossless image compression of hyperspectral images is proposed. The hyperspectral images are volumetric images that pose a challenge to the sensor memory. The contemporary transform-based compression algorithms exhibit remarkably efficient performance on the coding gain, complexity, and memory in comparison to other algorithms for lossy compression. The traditional 3D-DWT requires large memory for computation of wavelet coefficients of transform image. The fractional wavelet filter is a low memory solution to calculate the wavelet coefficients of the hyperspectral image. The 2D-ZM-SPECK is employed as a coding algorithm which is applied over HS image frame by frame basis. The simulation results indicate that the proposed compression algorithm has low memory requirements and high coding gain with less computational complexity. On observing the simulation results of the proposed compression algorithm, it is noticeable that the proposed coder is fast enough due to requiring low memory and hence proving its candidature in the implementation of a resource-constrained hyperspectral image sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

REFERENCES

  1. Achard V, Foucher PY, Dubucq D (2021) Hydrocarbon Pollution Detection and Mapping Based on the Combination of Various Hyperspectral Imaging Processing Tools. Remote Sens 13(5):1020. https://doi.org/10.3390/rs13051020

    Article  Google Scholar 

  2. Altamimi A, Ben Youssef B (2022) A Systematic Review of Hardware-Accelerated Compression of Remotely Sensed Hyperspectral Images. Sensors 22(1):263. https://doi.org/10.3390/s22010263

    Article  Google Scholar 

  3. Bairagi VK, Sapkal AM, Gaikwad MS (2013) The role of transforms in image compression. J Instit Eng (India): Series B 94(2):135–140. https://doi.org/10.1007/s40031-013-0049-9

    Article  Google Scholar 

  4. Bajpai S (2022) Low complexity block tree coding for hyperspectral image sensors. Multimed Tools Appl 81(23):33205–33323. https://doi.org/10.1007/s11042-022-13057-x

    Article  Google Scholar 

  5. Bajpai S (2023) Low complexity image coding technique for hyperspectral image sensors. Multimed Tools Appl 82 (20), 31233–31258. https://doi.org/10.1007/s11042-023-14738-x

  6. Bajpai S (2023) Low Complexity and Low Memory Compression Algorithm for Hyperspectral Image Sensors. Wirel Pers Commun 131(2):805–833. https://doi.org/10.1007/s11277-023-10455-8

    Article  Google Scholar 

  7. Bajpai S, Singh HV, Kidwai NR (2017) Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In: IEEE International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, pp 97–100. https://doi.org/10.1109/MSPCT.2017.8363982

  8. Bajpai S, Singh HV, Kidwai NR (2019) 3D modified wavelet block tree coding for hyperspectral images. Indonesian J Electri Eng Comput Sci (IJEECS) 15(2):1001–1008. https://doi.org/10.11591/ijeecs.v15.i2.pp1001-1008

    Article  Google Scholar 

  9. Bajpai S, Kidwai NR, Singh HV (2019) 3D Wavelet Block Tree Coding for Hyperspectral Images. Int J Innov Technol Exp Eng 8(6C):64–68

    Google Scholar 

  10. Bajpai S, Kidwai NR, Singh HV, Singh AK (2019) Low memory block tree coding for hyperspectral images. Multimed Tools Appl 78(19):27193–27209. https://doi.org/10.1007/s11042-019-07797-6

    Article  Google Scholar 

  11. Bajpai S, Kidwai NR, Singh HV, Singh AK (2022) A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimed Tools Appl 81(1):841–872. https://doi.org/10.1007/s11042-021-11456-0

    Article  Google Scholar 

  12. Bajpai S, Sharma D, Alam M, Chandel VS, Pandey AK, Tripathi SL (2023) Curvelet transform based compression algorithm for low resource hyperspectral image sensors. J Electr Comput Eng. https://doi.org/10.1155/2023/8961271

  13. Bano N, Alam M, Ahmad S (2017) Energy-Efficient, Low Memory Listless SPIHT Coder for Wireless Multimedia Sensor Networks. Adv Wireless Mobile Commun 10(5):871–883

    Google Scholar 

  14. Bilgin A, Zweig G, Marcellin MW (2000) Three-dimensional image compression with integer wavelet transforms. Appl Opt 39(11):1799–1814. https://doi.org/10.1364/AO.39.001799

    Article  Google Scholar 

  15. Boettcher JB, Du Q, Fowler JE (2007) Hyperspectral image compression with the 3D dual-tree wavelet transform. In 2007 IEEE International Geoscience and Remote Sensing Symposium IEEE, pp. 1033-1036. https://doi.org/10.1109/IGARSS.2007.4422977

  16. Chandra H, Bajpai S (2022). Listless block cube tree coding for low resource hyperspectral image compression sensors. In 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) (pp. 1–5). IEEE. https://doi.org/10.1109/IMPACT55510.2022.10029076.

  17. Chandra H, Bajpai S (2023) 3D-Block Partitioning Embedded Coding for Hyperspectral Image Sensors. In 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON) (pp. 1-5). IEEE. https://doi.org/10.1109/PIECON56912.2023.10085841

  18. Christophe E, Mailhes C, Duhamel P (2008) Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Trans Image Process 17(12):2334–2346. https://doi.org/10.1109/TIP.2008.2005824

    Article  MathSciNet  MATH  Google Scholar 

  19. Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490. https://doi.org/10.1111/tgis.12164

    Article  Google Scholar 

  20. Daniel B, González C, Mozos D (2018) Hyperspectral image compression using vector quantization, PCA and JPEG2000. Remote Sens 10(6):907. https://doi.org/10.3390/rs10060907

    Article  Google Scholar 

  21. Das S (2021) Hyperspectral image, video compression using sparse tucker tensor decomposition. IET Image Process 15(4):964–973. https://doi.org/10.1049/ipr2.12077

    Article  Google Scholar 

  22. Das A, Hazra A, Banerjee S (2009) An efficient architecture for 3-D discrete wavelet transform. IEEE Trans Circuits Syst Video Technol 20(2):286–296. https://doi.org/10.1109/TCSVT.2009.2031551

    Article  Google Scholar 

  23. Datta A, Ghosh S, Ghosh A (2017) Supervised feature extraction of hyperspectral images using partitioned maximum margin criterion. IEEE Geosci Remote Sens Lett 14(1):82–86. https://doi.org/10.1109/LGRS.2016.2628078

    Article  Google Scholar 

  24. Dmitriev EV, Kozoderov VV, Dementyev AO, Safonova AN (2018) Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics, Instrumen Data Proc 54(3):213–221. https://doi.org/10.3103/S8756699018030019

    Article  Google Scholar 

  25. Gnutti A, Guerrini F, Adami N, Migliorati P, Leonardi R (2021) A wavelet filter comparison on multiple datasets for signal compression and denoising. Multidim Syst Sign Process 32(2):791–820. https://doi.org/10.1007/s11045-020-00753-w

    Article  MATH  Google Scholar 

  26. Hou Y, Liu G (2007) 3D set partitioned embedded zero block coding algorithm for hyperspectral image compression. International symposium on multispectral image processing and pattern recognition, vol 6790, 2007, Wuhan, China. https://doi.org/10.1117/12.750975.

  27. Hou Y, Liu G (2008, June). Hyperspectral image lossy-to-lossless compression using the 3D Embedded Zeroblock Coding alogrithm. International Workshop on Earth Observation and Remote Sensing Applications : 1-6. https://doi.org/10.1109/EORSA.2008.4620308

  28. Kidwai NR, Khan E, Reisslein M. ZM-SPECK (2016) A fast and memoryless image coder for multimedia sensor networks. IEEE Sensors J 16(8) : 2575-2587. https://doi.org/10.1109/JSEN.2016.2519600.

  29. Lee S, Lee E, Choi H,Lee C (2005) Compression of hyperspectral images with 2D wavelet transform using adjacent information and SPIHT algorithm. In Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, pp. 1-3 https://doi.org/10.1109/IGARSS.2005.1526118

  30. Licciardi GA (2020) Hyperspectral compression. Data Handling Sci Technol 32:55–67. https://doi.org/10.1016/B978-0-444-63977-6.00004-3

    Article  Google Scholar 

  31. Mishra MK, Gupta A, John J, Shukla BP, Dennison P, Srivastava SS, Kaushik NK, Misra A, Dhar D (2019) Retrieval of atmospheric parameters and data-processing algorithms for AVIRIS-NG Indian campaign data. Curr Sci 116(7):1089–1100. https://doi.org/10.18520/cs/v116/i7/1089-1100

    Article  Google Scholar 

  32. Mitran T, Sreenivas K, Janakirama Suresh KG, Sujatha G, Ravisankar T (2021) Spatial Prediction of Calcium Carbonate and Clay Content in Soils using Airborne Hyperspectral Data. J Ind Soc Remote Sens 1-12. https://doi.org/10.1007/s12524-021-01415-5C

  33. Mohan BK, Porwal A (2015) Hyperspectral image processing and analysis. Curr Sci 108(5):833–841

    Google Scholar 

  34. Mohanty BK, Meher PK (2011) Memory-efficient architecture for 3-D DWT using overlapped grouping of frames. IEEE Trans Signal Process 59(11):5605–5616. https://doi.org/10.1109/TSP.2011.2162510

    Article  MathSciNet  MATH  Google Scholar 

  35. Munmun B, Kumar SA, Praise SD (2021) Two-Level Band Selection Framework for Hyperspectral Image Classification. J Ind Soc Remote Sens 49(4):843–856. https://doi.org/10.1007/s12524-020-01262-w

    Article  Google Scholar 

  36. Nagendran R, Vasuki A (2020) Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int J Wavelets Multiresolution Inf Process 18(01):1941008. https://doi.org/10.1142/S021969131941008X

    Article  MathSciNet  Google Scholar 

  37. Ngadiran R, Boussakta S, Sharif B, Bouridane A (2010) Efficient implementation of 3D listless SPECK. IEEE international conference on computer and communication engineering, pp 1–4. https://doi.org/10.1109/ICCCE.2010.5556843

  38. Oliver J, Malumbres MP (2008) On the design of fast wavelet transform algorithms with low memory requirements. IEEE Trans Circuits Syst Video Technol 18(2):237–248. https://doi.org/10.1109/TCSVT.2007.913962

    Article  Google Scholar 

  39. Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls, G, Chanussot J, Fauvel M, Gamba P, Gualtieri A Marconcini M (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ, 113 : S110-S122. https://doi.org/10.1016/j.rse.2007.07.028.

  40. Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879–891

    Google Scholar 

  41. Rein S, Reisslein M (2010) Low-memory wavelet transforms for wireless sensor networks: A tutorial. IEEE Commun Surv Tutor 13(2):291–307

    Article  Google Scholar 

  42. Rupali B (2018) Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption. J Electron Imag 27(2):023017. https://doi.org/10.1117/1.JEI.27.2.023017

    Article  Google Scholar 

  43. Rupali B (2021) An improved reversible and secure patient data hiding algorithm for telemedicine applications. J Ambient Intell Humaniz Comput 12(2):2915–2929. https://doi.org/10.1007/s12652-020-02449-2

    Article  Google Scholar 

  44. Sahoo RN, Ray SS, Manjunath KR (2015) Hyperspectral remote sensing of agriculture. Curr Sci 108(5):848–859

    Google Scholar 

  45. Setiadi DRIM (2021) PSNR vs SSIM: Imperceptibility quality assessment for image steganography. Multimed Tools Appl 80(6):8423–8444. https://doi.org/10.1007/s11042-020-10035-z

    Article  Google Scholar 

  46. Sharma D, Prajapati YK, Tripathi R (2018) Spectrally efficient 1.55 Tb/s Nyquist- WDM superchannel with mixed line rate approach using 27.75 Gbaud PM-QPSK and PM-16QAM. Opt Eng 57(7):076102. https://doi.org/10.1117/1.OE.57.7.076102

    Article  Google Scholar 

  47. Sharma D, Prajapati YK, Tripathi R (2018) Success Journey of Coherent PM-QPSK Technique With Its Variants: A Survey. IETE Tech Rev 37(1):36–55. https://doi.org/10.1080/02564602.2018.1557569

    Article  Google Scholar 

  48. Sneha, & Kaul, A. (2022) A Review of Hyperspectral Image Classification with Various Segmentation Approaches Based on Labelled Samples. Comput Vision Bio-Inspired Comput: Proc ICCVBIC 2021:69–92. https://doi.org/10.1007/978-981-16-9573-5_5

    Article  Google Scholar 

  49. Sneha K, A. (2022) Hyperspectral imaging and target detection algorithms: a review. Multimed Tools Appl 81(30):44141–44206. https://doi.org/10.1007/s11042-022-13235-x

    Article  Google Scholar 

  50. Song M, Zhang Y, Aydın TO (2022) Tempformer: Temporally consistent transformer for video denoising. In: European Conference on Computer Vision. Springer Nature Switzerland, Cham, pp 481–496. https://doi.org/10.1007/978-3-031-19800-7_28

    Chapter  Google Scholar 

  51. Srinivasarao BKN, Chakrabarti I (2016) High performance VLSI architecture for 3-D discrete wavelet transform. In 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1-4

  52. Sudha VK, Sudhakar R (2013) 3D listless embedded block coding algorithm for compression of volumetric medical images. J Sci Ind Res 72:735–748

    Google Scholar 

  53. Suresh KR, Manimegalai P (2019) Near lossless image compression using parallel fractal texture identification. Biomed Signal Proc Contr 58:101862. https://doi.org/10.1016/j.bspc.2020.101862

    Article  Google Scholar 

  54. Tang X, Pearlman WA (2004) Lossy-to-lossless block-based compression of hyperspectral volumetric data. IEEE Int Conf Image Proc, Singapore 5:3283–3286. https://doi.org/10.1109/ICIP.2004.1421815

    Article  Google Scholar 

  55. Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In: Hyperspectral Data Compression Springer, Boston, MA, pp 273–308. https://doi.org/10.1007/0-387-28600-4_10

  56. Tausif M, Kidwai NR, Khan E, Reisslein M, FrWF-based LMBTC (2015) Memory-efficient image coding for visual sensors. IEEE Sensors J 15(11):6218–6228. https://doi.org/10.1109/JSEN.2015.2456332

    Article  Google Scholar 

  57. Tausif M, Khan E, Pinheiro A (2023). Computationally efficient wavelet-based low memory image coder for WMSNs/IoT. Multidimensional Systems and Signal Processing, pp. 1-24. https://doi.org/10.1007/s11045-023-00878-8.

  58. Valsesia D, Magli E (2017) Fast and lightweight rate control for onboard predictive coding of hyperspectral images. IEEE Geosci Remote Sens Lett 14(3):394–398. https://doi.org/10.1109/LGRS.2016.2644726

    Article  Google Scholar 

  59. Verma B, Prasad R, Srivastava PK, Yadav SA, Singh P, Singh RK (2022) Investigation of optimal vegetation indices for retrieval of leaf chlorophyll and leaf area index using enhanced learning algorithms. Comput Electron Agric 192:106581. https://doi.org/10.1016/j.compag.2021.106581

    Article  Google Scholar 

  60. Wang L, Jiao L, Bai J, Wu J (2010) Hyperspectral image compression based on 3D reversible integer lapped transform. Electron Lett 46(24):1601–1602

    Article  Google Scholar 

  61. Weeks M, Bayoumi M (1998) 3D discrete wavelet transform architectures. In ISCAS'98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems Vol. 4, pp. 57-60

  62. Yadav CS, Pradhan MK, Gangadharan SMP, Chaudhary JK, Singh J, Khan AA, Haq MA, Alhussen A, Wechtaisong C, Imran H, Alzamil ZS (2022) Multi-Class Pixel Certainty Active Learning Model for Classification of Land Cover Classes Using Hyperspectral Imagery. Electronics 11(17):2799. https://doi.org/10.3390/electronics11172799

    Article  Google Scholar 

  63. Yaman D, Kumar V, Singh RS (2020) Comprehensive review of hyperspectral image compression algorithms. Opt Eng 59(9):090902. https://doi.org/10.1117/1.OE.59.9.090902

    Article  Google Scholar 

  64. Yaman D, Kumar V, Singh RS (2021) Parallel lossless HSI compression based on RLS filter. J Parallel Distrib Comput 150:60–68. https://doi.org/10.1016/j.jpdc.2020.12.004

    Article  Google Scholar 

  65. Yaman D, Singh RS, Parwani K, Lunagariya S, Kumar V (2021) Convolution Neural Network based lossy compression of hyperspectral images. Signal Process Image Commun 95:116255. https://doi.org/10.1016/j.image.2021.116255

    Article  Google Scholar 

  66. Yang CH, Wang JC, Wang JF, Chang CW (2007) A block-based architecture for lifting scheme discrete wavelet transform. IEICE Trans Fundam Electron Commun Comput Sci 90(5):1062–1071

    Article  Google Scholar 

  67. Yoon J (2022) Hyperspectral imaging for clinical applications. BioChip J 16(1):1–12. https://doi.org/10.1007/s13206-021-00041-0

    Article  Google Scholar 

  68. Zabalza J, Qing C, Yuen P, Sun G, Zhao H, Ren J (2018) Fast implementation of two-dimensional singular spectrum analysis for effective data classification in hyperspectral imaging. J Franklin Instit 355(4):1733–1751. https://doi.org/10.1016/j.jfranklin.2017.05.020

    Article  MathSciNet  Google Scholar 

  69. Zabalza J, Murray P, Marshall S, Ren J, Bernard R, Hepworth S (2022) Hyperspectral imaging based detection of PVC during Sellafield repackaging procedures. IEEE Sensors J 23(1):452–459. https://doi.org/10.1109/JSEN.2022.3221680

    Article  Google Scholar 

  70. Zhang Y, Reinhard E, Bull DR (2012). Perceptually lossless high dynamic range image compression with jpeg 2000. In 2012 19th IEEE International Conference on Image Processing (pp. 1057-1060). IEEE. https://doi.org/10.1109/ICIP.2012.6467045.

  71. Zhang Y, Naccari M, Agrafiotis D, Mrak M, Bull DR (2015) High dynamic range video compression exploiting luminance masking. IEEE Trans Circuits Syst Video Technol 26(5):950–964. https://doi.org/10.1109/TCSVT.2015.2426552

    Article  Google Scholar 

  72. Zikiou N, Lahdir M, Helbert D (2019) Support vector regression-based 3D-wavelet texture learning for hyperspectral image compression. Vis Comput 36(7):1473–1490. https://doi.org/10.1007/s00371-019-01753-z

    Article  Google Scholar 

Download references

Acknowledgments

We are sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper. The authors would like to gratefully acknowledge the support of the Integral University, Lucknow, Uttar Pradesh, India and Manuscript Communication Number for this manuscript is IU/R&D/2022-MCN0001387.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrish Bajpai.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable

Consent

All authors agreed on the fnal approval of the version to be published.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, S., Kidwai, N.R. Fractional wavelet filter based low memory coding for hyperspectral image sensors. Multimed Tools Appl (2023). https://doi.org/10.1007/s11042-023-16528-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-023-16528-x

Keywords

Navigation