Skip to main content
Log in

Classification of non-small cell lung cancers using deep convolutional neural networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Lung cancer is a major cause of cancer-related deaths worldwide, and early detection is crucial in reducing mortality rates. To aid in this effort, researchers have been exploring various deep-learning techniques to enhance computer-aided systems that utilize computed tomography in lung cancer screening. One such technique is transfer learning, which allows for the use of pre-trained models to reduce the need for extensive training data. However, deep convolutional neural networks (DCNNs), which are commonly used in deep learning, can be challenging to train due to over-fitting, and effective training requires substantial amounts of data. To address these limitations, the authors propose a dual-state transfer learning method using a deep CNN-based approach. This method aims to develop an efficient training model that reduces variance and avoids over-fitting, while accurately classifying and detecting lung cancer types such as adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, using CT-scanned chest images. In order to achieve effective results, the authors utilized pre-trained models such as the DCNN, VGG16, Inceptionv3, and RestNet50. Metrics like the f1-score, recall, precision, and accuracy were used to evaluate the performance of the proposed model. During training, the ResNet50 model achieved an accuracy of 94% using dual-state transfer learning, while during validation and testing it achieved 92.57% and 96.12% accuracy, respectively. In classification tasks, the DSTL model based on Deep CNNs also surpassed state-of-the-art models. To summarize, the precision and effectiveness of screening and detecting lung cancer can be improved by utilizing dual-state transfer learning methods and deep CNN-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig 13
Fig. 14
Fig. 15
Fig 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The referred papers will be available on request.

References

  1. Agarap AF (2018) Deep learning using rectified linear units (ReLU). ArXiv, abs/1803.08375.

  2. Akinbo SRA, Daramola O (2021) Ensemble machine learning algorithms for prediction and classification of medical images. Artif Intell. https://doi.org/10.5772/intechopen.100602

  3. Altaf F, Islam SMS, Akhtar N, Janjua NK (2019) Going deep in medical image analysis: concepts, methods, challenges, and future directions. IEEE Access 7:99540–99572. https://doi.org/10.1109/access.2019.2929365

    Article  Google Scholar 

  4. Aydin N, Çelik Ö, Aslan AF, Odabaş A, Dündar E, Şahin MC (2021) Detection of lung cancer on computed tomography using artificial intelligence applications developed by deep learning methods and the contribution of deep learning to the classification of lung carcinoma. Curr Med Imaging Formerly: Curr Med Imaging Rev 17. https://doi.org/10.2174/1573405617666210204210500

  5. Boudrioua MS (2020) COVID-19 detection from chest X-ray images using CNNs models: further evidence from deep transfer learning. SSRN Electron J. https://doi.org/10.2139/ssrn.3630150

  6. Carimatto AJ, Charbon E (2021) Integrated SPAD-fed artificial neural networks for computer vision and image processing. Imaging, Manipul, Anal Biomolecu, Cells, Tissues XIX. https://doi.org/10.1117/12.2577482

  7. Chen G, Zhang J, Zhuo D, Pan Y, Pang C (2019) Identification of pulmonary nodules via CT images with hierarchical fully convolutional networks. Med Biol Eng Comput 57(7):1567–1580. https://doi.org/10.1007/s11517-019-01976-1

    Article  Google Scholar 

  8. Cheng L, Chang D, Xie J, Ma R, Wu C, Ma Z (2019) Channel max pooling for image classification. Intell Sci Big Data Eng. Visual Data Eng:273–284. https://doi.org/10.1007/978-3-030-36189-1_23

  9. Chest CT-Scan images Dataset (n.d.). Retrieved February 5, 2022, from https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-images

  10. Früh M, De Ruysscher D, Popat S, Crinò L, Peters S, Felip E (2013) Small-cell lung cancer (SCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24:vi99–vi105. https://doi.org/10.1093/annonc/mdt178

    Article  Google Scholar 

  11. Gartenschläger M, Schweden F, Gast K, Westermeier T, Kauczor H, von Zitzewitz H et al (1998) Pulmonary nodules: detection with low-dose vs conventional-dose spiral CT. Eur Radiol 8:609–614

    Article  Google Scholar 

  12. Gong J, Liu J, Hao W, Nie S, Zheng B, Wang S, Peng W (2019) A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Eur Radiol. https://doi.org/10.1007/s00330-019-06533-w

  13. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. IEEE Conf Comput Vision Patt Recogn (CVPR) 2016:770–778. https://doi.org/10.1109/cvpr.2016.90

    Article  Google Scholar 

  14. Iaccarino JM, Duran C, Slatore CG, Wiener RS, Kathuria H (2019) Combining smoking cessation interventions with LDCT lung cancer screening: A systematic review. Prev Med 121:24–32. https://doi.org/10.1016/j.ypmed.2019.02.016

    Article  Google Scholar 

  15. Kanmani M, Narasimhan V (2019) Particle swarm optimisation aided weighted averaging fusion strategy for CT and MRI medical images. Int J Biomed Eng Technol 31(3):278. https://doi.org/10.1504/ijbet.2019.102975

    Article  Google Scholar 

  16. Karabulut N, Törü M, Gelebek V, Gülsün M, Ariyürek MO (2002) Comparison of low-dose and standard-dose helical CT in the evaluation of pulmonary nodules. Eur Radiol 12(11):2764–2769. https://doi.org/10.1007/s00330-002-1368-4

    Article  Google Scholar 

  17. Katar O, Duman E (2021) Deep learning based Covid-19 detection with A novel CT images dataset: EFSCH-19. Eur J Sci Technol. https://doi.org/10.31590/ejosat.1021030

  18. Kawagishi M, Chen B, Furukawa D, Sekiguchi H, Sakai K, Kubo T, Yakami M, Fujimoto K, Sakamoto R, Emoto Y, Aoyama G, Iizuka Y, Nakagomi K, Yamamoto H, Togashi K (2017) A study of computer-aided diagnosis for pulmonary nodule: comparison between classification accuracies using calculated image features and imaging findings annotated by radiologists. Int J Comput Assist Radiol Surg 12(5):767–776. https://doi.org/10.1007/s11548-017-1554-0

    Article  Google Scholar 

  19. Kim JYS, Kozlow JH, Mittal B, Moyer J, Olenecki T, Rodgers P, Alam M, Armstrong A, Baum C, Bordeaux JS, Brown M, Busam KJ, Eisen DB, Iyengar V, Lober C, Margolis DJ, Messina J, Miller A, Miller S, Mostow E (2018) Guidelines of care for the management of cutaneous squamous cell carcinoma. J Am Acad Dermatol 78(3):560–578. https://doi.org/10.1016/j.jaad.2017.10.007

    Article  Google Scholar 

  20. Kishor A, Chakraborty C (2022) Artificial intelligence and internet of things based healthcare 4.0 monitoring system. Wirel Pers Commun 127(2):1615–1631. https://doi.org/10.1007/s11277-021-08708-5

    Article  Google Scholar 

  21. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  22. Kumar, A., Singh, K.P., Kumar, S., Vetrivendan, L. (2022). Image classification in python using Keras. In: Gupta, D., Polkowski, Z., Khanna, A., Bhattacharyya, S., Castillo, O. (eds) Proceedings of Data Analytics and Management . Lecture Notes on Data Engineering and Communications Technologies, vol 90. Springer, Singapore. https://doi.org/10.1007/978-981-16-6289-8_45

  23. Larke FJ, Kruger RL, Cagnon CH, Flynn MJ, McNitt-Gray MM, Wu X, Judy PF, Cody DD (2011) Estimated radiation dose associated with low-dose chest CT of average-size participants in the National Lung Screening Trial. Am J Roentgenol 197(5):1165–1169. https://doi.org/10.2214/ajr.11.6533

    Article  Google Scholar 

  24. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  25. Luo Z, Zhang H, Xiao Y, Wang R, Zhang L, Huang C, Cao Y, Sun C, Zhao Y, Lin H, Wu D, Wang T (2021) Durable response to immunotherapy with antiangiogenic drug in large-cell lung carcinoma with multiple fulminant postoperative metastases: A case report. Front Oncol 11. https://doi.org/10.3389/fonc.2021.633446

  26. Mao K, Tang R, Wang X, Zhang W, Wu H (2018) Feature representation using deep autoencoder for lung nodule image classification. Complexity 2018:1–11. https://doi.org/10.1155/2018/3078374

    Article  Google Scholar 

  27. Miller R, Dickson C, Galloway F, Dawson M (2020) Developing a virtual pneumonia clinic for early investigation and detection of lung cancers. Lung Cancer 139:S6–S7. https://doi.org/10.1016/s0169-5002(20)30042-8

    Article  Google Scholar 

  28. Monkam P, Qi S, Ma H, Gao W, Yao Y, Qian W (2019) Detection and classification of pulmonary nodules using convolutional neural networks: A survey. IEEE Access 7:78075–78091. https://doi.org/10.1109/access.2019.2920980

    Article  Google Scholar 

  29. Narin A, Kaya C, Pamuk Z (2021) Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. Pattern Anal Applic. https://doi.org/10.1007/s10044-021-00984-y

  30. NIH (2020) https://www.kaggle.com/nih-chest-xrays/data. Last accessed date 16th Dec 2021

  31. Nishio M, Sugiyama O, Yakami M, Ueno S, Kubo T, Kuroda T, Togashi K (2018) Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS One 13(7):e0200721. https://doi.org/10.1371/journal.pone.0200721

    Article  Google Scholar 

  32. Palmer C (2020) Neuromorphic computing advances deep-learning applications. Engineering 6(8):854–856. https://doi.org/10.1016/j.eng.2020.06.010

    Article  Google Scholar 

  33. Pang S, Du A, Orgun MA, Yu Z (2018) A novel fused convolutional neural network for biomedical image classification. Med Biol Eng Comput 57(1):107–121. https://doi.org/10.1007/s11517-018-1819-y

    Article  Google Scholar 

  34. Phillips T, Simmons P, Inzunza HD, Cogswell J, Novotny J, Taylor C, Zhang X (2015) Development of an Automated PD-L1 Immunohistochemistry (IHC) Assay for Non–Small Cell Lung Cancer. Appl Immunohistochem Mol Morphol 23(8):541–549. https://doi.org/10.1097/pai.0000000000000256

    Article  Google Scholar 

  35. Popper H, Murer B (2020) Large cell carcinoma. Essentials of Diagnostic Pathology 95–99. https://doi.org/10.1007/978-3-030-22664-0_7

  36. Sadhwani A, Chang H-W, Behrooz A, Brown T, Auvigne-Flament I, Patel H, Findlater R, Velez V, Tan F, Tekiela K, Wulczyn E, Yi ES, Mermel CH, Hanks D, Chen P-HC, Kulig K, Batenchuk C, Steiner DF, Cimermancic P (2021) Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-95747-4

  37. Salem FM (2022) Recurrent neural networks: From simple to gated architectures. Springer. https://doi.org/10.1007/978-3-030-89929-5

  38. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.

  39. Sitaula C, Hossain MB (2020) Attention-based VGG-16 model for COVID-19 chest X-ray image classification. Appl Intell. https://doi.org/10.1007/s10489-020-02055-x

  40. Smith KA (2000) Going deeper: formal small-group learning in large classes. New Dir Teach Learn 2000(81):25–46. https://doi.org/10.1002/tl.8103

    Article  Google Scholar 

  41. Srivatsan S, Han PD, Raay KV, Wolf CR, McCulloch DJ et al (2020) Preliminary support for a “dry swab, extraction free” protocol for sars-cov-2 testing via rt-qpcr. bioRxiv. https://doi.org/10.1101/2020.04.22.056283

  42. Teramoto A, Tsukamoto T, Kiriyama Y, Fujita H (2017) Automated classification of lung cancer types from cytological images using deep CNNss. Biomed Res Int 2017:4067832. https://doi.org/10.1155/2017/4067832

    Article  Google Scholar 

  43. Tlemsani C, Pongor LS, Elloumi F, Girard L, Huffman KE, Roper N, Varma S, Luna A, Rajapakse VN, Sebastian R, Kohn KW, Krushkal J, Aladjem MI, Teicher BA, Meltzer PS, Reinhold WC, Minna JD, Thomas A, Pommier Y (2020) SCLC-CellMiner: A resource for small cell lung cancer cell line genomics and pharmacology based on genomic signatures. Cell Rep 33:108296–108296

    Article  Google Scholar 

  44. Travis WD, Colby TV, Corrin B et al (1999) Histological typing of lung and pleural tumours, 3rd edn. Springer-Verlag

    Book  Google Scholar 

  45. van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA (2022) Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 102470. https://doi.org/10.1016/j.media.2022.102470

  46. Velugoti S, Reddy RH, Tarannum S, Reddy STK (2022) Lung nodule detection and classification using image processing techniques. Int J Comput Eng Res Trends 9(7):114–119. https://doi.org/10.22362/ijcert/2022/v9/i07/v9i0701

    Article  Google Scholar 

  47. Wang S, Yang DM, Rong R, Zhan X, Fujimoto J, Liu H, Minna J, Wistuba II, Xie Y, Xiao G (2019) Artificial intelligence in lung cancer pathology image analysis. Cancers 11(11):1673. https://doi.org/10.3390/cancers11111673

    Article  Google Scholar 

  48. Weng S, Xu X, Li J, Wong STC (2017) Combining deep learning and coherent anti-stokes Raman scattering imaging for automated differential diagnosis of lung cancer. J Biomed Opt 22(10):1. https://doi.org/10.1117/1.jbo.22.10.106017

    Article  Google Scholar 

  49. Xie Y, Xia Y, Zhang J, Feng DD, Fulham M, Cai W (2017) Transferable multi-model Ensemble for Benign-Malignant Lung Nodule Classification on chest CT. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S (eds) Medical image computing and computer assisted intervention − MICCAI 2017. MICCAI 2017, Lecture notes in computer science(), vol 10435. Springer, Cham. https://doi.org/10.1007/978-3-319-66179-7_75

  50. Xie H, Chen Z, Deng J, Zhang J, Duan H, Li Q (2022) Automatic segmentation of the gross target volume in radiotherapy for lung cancer using transresSEUnet 2.5D network. J Transl Med 20(1). https://doi.org/10.1186/s12967-022-03732-w

  51. Xu Q, Wang Z, Wang F, Gong Y (2019) Multi-feature fusion CNNs for drosophila embryo of interest detection. Physica A: Stat Mech Appl 531:121808. https://doi.org/10.1016/j.physa.2019.121808

    Article  Google Scholar 

  52. Xu Q, Wang F, Gong Y, Wang Z, Zeng K, Li Q, Luo X (2019) A novel edge-oriented framework for saliency detection enhancement. Image Vis Comput 87:1–12. https://doi.org/10.1016/j.imavis.2019.04.002

    Article  Google Scholar 

  53. Yang S, Wang J, Deng B, Azghadi MR, Linares-Barranco B (2021) Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans Neural Networks Learning Syst 33(12):7126–7140. https://doi.org/10.1109/TNNLS.2021.3084250

    Article  Google Scholar 

  54. Yang S, Tan J, Chen B (2022) Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion. Entropy 24(4):455. https://doi.org/10.3390/e24040455

    Article  MathSciNet  Google Scholar 

  55. Yang S, Linares-Barranco B, Chen B (2022) Heterogeneous ensemble-based spike-driven few-shot online learning. Front Neurosci 16. https://doi.org/10.3389/fnins.2022.850932

  56. Yang S, Tan J, Lei T, Linares-Barranco B (2023) Smart traffic navigation system for fault-tolerant edge computing of internet of vehicle in intelligent transportation gateway. IEEE Trans Intell Transp Syst I. https://doi.org/10.1109/TITS.2022.3232231

  57. Yap MH, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R, Davison AK, Marti R (2018) Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform 22(4):1218–1226. https://doi.org/10.1109/jbhi.2017.2731873

    Article  Google Scholar 

  58. Yu K-H, Wang F, Berry GJ, Ré C, Altman RB, Snyder M, Kohane IS (2020) Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J Am Med Inform Assoc 27(5):757–769. https://doi.org/10.1093/jamia/ocz230

    Article  Google Scholar 

  59. Zhao D, Chen M, Shi K, Ma M, Huang Y, Shen J (2021) A long short-term memory-fully connected (LSTM-FC) neural network for predicting the incidence of bronchopneumonia in children. Environ Sci Pollut Res 28(40):56892–56905. https://doi.org/10.1007/s11356-021-14632-9

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like thank the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Naresh Kumar Reddy.

Ethics declarations

Conflict of interest

Authors declare no conflict of Interest.

Ethics Approval

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

All authors voluntarily agree to participate in this Research paper.

Consent for Publication

All authors give the permission to the Journal to publish this Research paper

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atiya, S.U., Ramesh, N.V.K. & Reddy, B.N.K. Classification of non-small cell lung cancers using deep convolutional neural networks. Multimed Tools Appl 83, 13261–13290 (2024). https://doi.org/10.1007/s11042-023-16119-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16119-w

Keywords

Navigation