Skip to main content
Log in

Machine learning in agriculture: a review of crop management applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Machine learning has created new opportunities for data-intensive study in interdisciplinary domains as a result of the advancement of big data technologies and high-performance computers. Search engines, email spam filters, websites that offer personalized recommendations, banking software that alerts users to suspicious activity, and a plethora of smartphone apps that perform tasks like voice recognition, image recognition, and natural language processing are just a few examples of the online and offline services that have incorporated machine learning in recent years. One of the most crucial areas where machine learning applications still has to be investigated is agriculture, which directly affects people’s well-being. In this article, a literature review on machine learning algorithms used in agriculture is presented. The proposed paper deal with various crop management applications which are categorised into five parts i.e., Weed and pest detection, Plant disease detection, Stress detection in plants, Smart farms or automation in farms and the last one is Crop yield estimation and prediction. The articles’ filtering and categorization show how machine learning may improve agriculture. This article examines machine learning breakthroughs in agriculture. This paper’s findings show that by using novel machine learning approaches, models may achieve improved accuracy and shorter inference time for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study

References

  1. Abade A, Ferreira PA, de Barros Vidal F (2021) Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput Electron Agric. 185. https://doi.org/10.1016/j.compag.2021.106125

  2. Alam M, Alam MS, Roman M, Tufail M, Khan MU, Khan MT. Real-Time Machine-Learning Based Crop/Weed Detection and Classification for Variable-Rate Spraying in Precision Agriculture. In: 2020 7th International Conference on Electrical and Electronics Engineering, ICEEE 2020. Institute of Electrical and Electronics Engineers Inc.; 2020. p. 273–80

  3. Albuquerque CKG, Polimante S, Torre-Neto A, Prati RC (2020) Water spray detection for smart irrigation systems with Mask R-CNN and UAV footage. 2020 IEEE Int Work Metrol Agric For MetroAgriFor 2020 - Proc, 236–240. https://doi.org/10.1109/MetroAgriFor50201.2020.9277542

  4. Alessandrini M, Calero Fuentes Rivera R, Falaschetti L, Pau D, Tomaselli V, Turchetti C (2021) A grapevine leaves dataset for early detection and classification of esca disease in vineyards through machine learning. Data Br. 35

  5. AlZu’bi S, Hawashin B, Mujahed M, Jararweh Y, Gupta BB (2019) An efficient employment of internet of multimedia things in smart and future agriculture. Multimed Tools Appl. 78(20):29581–29605. https://doi.org/10.1007/s11042-019-7367-0

    Article  Google Scholar 

  6. Ang KLM, Seng JKP (2021) Big data and machine learning with hyperspectral information in agriculture. IEEE Access 9:36699–36718. https://doi.org/10.1109/ACCESS.2021.3051196

    Article  Google Scholar 

  7. Appeltans S, Pieters JG, Mouazen AM (2021) Detection of leek white tip disease under field conditions using hyperspectral proximal sensing and supervised machine learning. Comput Electron Agric. 190:106453.Available from https://www.sciencedirect.com/science/article/pii/S0168169921004701. Accessed 12 Mar 2023

  8. Araus JL, Cairns JE (2014) Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci 19(1):52–61. https://doi.org/10.1016/j.tplants.2013.09.008

    Article  Google Scholar 

  9. Asad MH, Bais A (2020) Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network. Inf Process Agric 7(4):535–545. https://doi.org/10.1016/j.inpa.2019.12.002

    Article  Google Scholar 

  10. Ataş M, Yardimci Y, Temizel A (2012) A new approach to aflatoxin detection in chili pepper by machine vision. Comput Electron Agric 87:129–141

    Article  Google Scholar 

  11. Bakhshipour A, Jafari A (2018) Evaluation of support vector machine and artificial neural networks in weed detection using shape features. Comput Electron Agric 145:153–160

    Article  Google Scholar 

  12. Barbedo JGA (2019) Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput Electron Agric. Elsevier B.V.; 162: 482–92

  13. Benos L, Tagarakis AC, Dolias G, Berruto R, Kateris D, Bochtis D (2021) Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 21(11):3758. https://doi.org/10.3390/s21113758

    Article  Google Scholar 

  14. Bhange M, Hingoliwala HA (2015) Smart Farming: Pomegranate Disease Detection Using Image Processing. In: Procedia Computer Science. Elsevier; p. 280–8

  15. Bienertova-Vasku J, Lenart P, Scheringer M (2020) Eustress and Distress: Neither Good Nor Bad, but Rather the Same? BioEssays. 42(7)

  16. Boissard P, Martin V, Moisan S (2008) A cognitive vision approach to early pest detection in greenhouse crops. Comput Electron Agric 62(2):81–93

    Article  Google Scholar 

  17. Brinkhoff J, Vardanega J, Robson AJ (2020) Land cover classification of nine perennial crops using sentinel-1 and -2 data. Remote Sens. 12(1)

  18. Cattivelli L et al (2008) Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. F Crop Res 105(1–2):1–14. https://doi.org/10.1016/j.fcr.2007.07.004

    Article  Google Scholar 

  19. Chen M et al (2021) A reinforcement learning approach to irrigation decision-making for rice using weather forecasts. Agric Water Manag. 250(March):106838. https://doi.org/10.1016/j.agwat.2021.106838

    Article  Google Scholar 

  20. Chen Y-R, Chao K, Kim MS. Machine vision technology for agricultural applications. Available from: www.elsevier.com/locate/compag. Accessed 12 Mar 2023

  21. Chen J, Liu Q, Gao L (2021) Deep convolutional neural networks for tea tree pest recognition and diagnosis. Symmetry (Basel) 13(11):1–12. https://doi.org/10.3390/sym13112140

    Article  Google Scholar 

  22. Conrad AO, Li W, Lee DY, Wang GL, Rodriguez-Saona L, Bonello P (2020) Machine learning-based presymptomatic detection of rice sheath blight using spectral profiles. Plant Phenomics. 2020

  23. Cravero A, Sepúlveda S (2021) Use and adaptations of machine learning in big data—applications in real cases in agriculture. Electron 10(5):1–35. https://doi.org/10.3390/electronics10050552

    Article  Google Scholar 

  24. Daniya T, Vigneshwari S (2019) A review on machine learning techniques for rice plant disease detection in agricultural research. Int J Adv Sci Technol 28(13):49–62

    Google Scholar 

  25. Dawei W, Limiao D, Jiangong N, Jiyue G, Hongfei Z, Zhongzhi H (2019) Recognition pest by image-based transfer learning. J Sci Food Agric 99(10):4524–4531. https://doi.org/10.1002/jsfa.9689

    Article  Google Scholar 

  26. de Castro AI, Torres-Sánchez J, Peña JM, Jiménez-Brenes FM, Csillik O, López-Granados F (2018) An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 10(2)

  27. Dian Bah M, Hafiane A, Canals R (2018) Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sens 10(11):1–22. https://doi.org/10.3390/rs10111690

    Article  Google Scholar 

  28. Etienne A, Saraswat D (2019) Machine learning approaches to automate weed detection by UAV sensors. Int Soc Opt Photonics. 11008

  29. Evstatiev BI, Gabrovska-Evstatieva KG (2021) A review on the methods for big data analysis in agriculture. IOP Conf Ser Mater Sci Eng. 1032(1): https://doi.org/10.1088/1757-899X/1032/1/012053

  30. Friedel CC, Jahn KHV, Sommer S, Rudd S, Mewes HW, Tetko IV (2005) Support vector machines for separation of mixed plant-pathogen EST collections based on codon usage. Bioinformatics 21(8):1383–1388

    Article  Google Scholar 

  31. Ganesh Babu R, Chellaswamy C (2022) Different stages of disease detection in squash plant based on machine learning. J Biosci. 47(1)

  32. Garibaldi-márquez F, Flores G, Mercado-ravell DA, Ramírez-pedraza A, Valentín-coronado LM (2022) Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning. 1–22

  33. Guo Q, Kelly M, Graham CH (2005) Support vector machines for predicting distribution of Sudden Oak Death in California. Ecol Modell 182(1):75–90

    Article  Google Scholar 

  34. Harakannanavar SS, Rudagi JM, Puranikmath VI, Siddiqua A, Pramodhini R (2022) Plant leaf disease detection using computer vision and machine learning algorithms. Glob Transitions Proc 3(1):305–310

    Article  Google Scholar 

  35. Helm JM et al (2020) Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr Rev Musculoskelet Med 13(1):69–76. https://doi.org/10.1007/s12178-020-09600-8

    Article  Google Scholar 

  36. Islam N, Rashid MM, Wibowo S, Xu CY, Morshed A, Wasimi SA, et al. (2021) Early weed detection using image processing and machine learning techniques in an australian chilli farm. Agric. 11(5)

  37. Jansen MA, Potters G (2017) Stress: The Way of Life. Plant Stress Physiology, 2nd edn. CABI, London, UK, pp ix–xiv

    Google Scholar 

  38. Javidan SM, Banakar A, Vakilian KA, Ampatzidis Y (2023) Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agric Technol 3:100081

    Article  Google Scholar 

  39. Jiang Q, Wu G, Tian C, Li N, Yang H, Bai Y, et al. (2021) Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. Infrared Phys Technol. 118

  40. Jose A, Nandagopalan S, Venkata CM, Akana S (2021) Artificial Intelligence Techniques for Agriculture Revolution: A Survey. Ann Rom Soc Cell Biol. 25(4): 2580–2597. Available: http://annalsofrscb.ro. Accessed 12 Mar 2023

  41. Jung J, Maeda M, Chang A, Bhandari M, Ashapure A, Landivar-Bowles J (2021) The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr Opin Biotechnol 70:15–22. https://doi.org/10.1016/j.copbio.2020.09.003

    Article  Google Scholar 

  42. Karadağ K, Tenekeci ME, Taşaltın R, Bilgili A (2020) Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustain Comput Inform Syst. 28

  43. Kaur N, Devendran V (2020) Novel plant leaf disease detection based on optimize segmentation and law mask feature extraction with SVM classifier. Mater Today Proc

  44. Khan MA, Ali M, Shah M, Mahmood T, Ahmad M, Jhanjhi NZ et al (2021) Machine learning-based detection and classification of walnut fungi diseases. Intell Autom Soft Comput 30(3):771–785

    Article  Google Scholar 

  45. van Klompenburg T, Kassahun A, Catal C (2020) Crop yield prediction using machine learning: A systematic literature review. Comput Electron Agric. Elsevier B.V. Vol. 177

  46. Kong W, Liu F, Zhang C, Bao Y, Yu J, He Y (2014) Fast detection of peroxidase (POD) activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging. Spectrochim Acta - Part A Mol Biomol Spectrosc 118:498–502

    Article  Google Scholar 

  47. Kounalakis T, Triantafyllidis GA, Nalpantidis L (2019) Deep learning-based visual recognition of rumex for robotic precision farming. Comput Electron Agric. 165(October). https://doi.org/10.1016/j.compag.2019.104973

  48. Kulkarni P, Karwande A, Kolhe T, Kamble S, Joshi A, Wyawahare M. Plant Disease Detection Using Image Processing and Machine Learning

  49. Kumar KKEK (2022) Detection of rice plant disease using AdaBoostSVM classifier. Agron J 114(4):2213–2229

    Article  MathSciNet  Google Scholar 

  50. Lampridi MG, Sørensen CG, Bochtis D (2019) Agricultural sustainability: A review of concepts and methods. Sustain. 11(18). https://doi.org/10.3390/su11185120

  51. Lan Y, Huang Z, Deng X, Zhu Z, Huang H, Zheng Z, et al. (2020) Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Comput Electron Agric. 171

  52. Langemeier M, Dobbins C, Nielsen B, Vyn T, Casteel S, Johnson B (2021) Purdue Crop Cost & Return Guide, Purdue University, 2021

  53. Leonardo MM, Carvalho TJ, Rezende E, Zucchi R, Faria FA (2019) Deep Feature-Based Classifiers for Fruit Fly Identification (Diptera: Tephritidae). Proc - 31st Conf Graph Patterns Images. SIBGRAPI 2018:41–47. https://doi.org/10.1109/SIBGRAPI.2018.00012

    Article  Google Scholar 

  54. Li N, Ren Z, Li D, Zeng L (2020) Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming. Animal 14(3):617–625. https://doi.org/10.1017/S1751731119002155

    Article  Google Scholar 

  55. Li D, Yang W, Wang S (2010) Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine. Comput Electron Agric 74(2):274–279

    Article  Google Scholar 

  56. Liakos K, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine Learning in Agriculture: A Review. Sensors 18(8):2674. https://doi.org/10.3390/s18082674

    Article  Google Scholar 

  57. Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95(3):233–240. https://doi.org/10.1094/PHYTO-95-0233

    Article  Google Scholar 

  58. Liu Y et al (2022) Forest pest identification based on a new dataset and convolutional neural network model with enhancement strategy. Comput Electron Agric. 192(June 2021):106625. https://doi.org/10.1016/j.compag.2021.106625

    Article  Google Scholar 

  59. Loey M, ElSawy A, Afify M (2020) Deep learning in plant diseases detection for agricultural crops: A survey. Int J Serv Sci Manag Eng Technol 11(2):41–58. https://doi.org/10.4018/IJSSMET.2020040103

    Article  Google Scholar 

  60. Mayuri KP, Priya VC (2018) Role of Image Processing and Machine Learning Techniques in Disease Recognition, Diagnosis and Yield Prediction of Crops: a Review. Int J Adv Res Comput Sci. 9(2):975–8887. https://doi.org/10.26483/ijarcs.v9i2.5793

    Article  Google Scholar 

  61. Meng T, Jing X, Yan Z, Pedrycz W (2020) A survey on machine learning for data fusion. Inf Fusion 57:115–129. https://doi.org/10.1016/j.inffus.2019.12.001

    Article  Google Scholar 

  62. Meshram V, Patil K, Meshram V, Hanchate D, Ramkteke SD (2021) Machine learning in agriculture domain: A state-of-art survey. Artif Intell Life Sci 1:100010. https://doi.org/10.1016/j.ailsci.2021.100010. (ISSN 2667-3185)

    Article  Google Scholar 

  63. Milioto A, Lottes P, Stachniss C (2017) Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 4(2W3):41–48. https://doi.org/10.5194/isprs-annals-IV-2-W3-41-2017

    Article  Google Scholar 

  64. Moshia ME, Newete SW (2019) Mexican poppy (Argemone mexicana) control in cornfield using deep learning neural networks: a perspective. Acta Agric Scand Sect B Soil Plant Sci 69(3):228–234. https://doi.org/10.1080/09064710.2018.1536225

    Article  Google Scholar 

  65. Mourtzinis S, Esker PD, Specht JE et al (2021) Advancing agricultural research using machine learning algorithms. Sci Rep 11(1):17879. https://doi.org/10.1038/s41598-021-97380-7

    Article  Google Scholar 

  66. Myers SS et al (2017) Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Public Health 38(December):259–277. https://doi.org/10.1146/annurev-publhealth-031816-044356

    Article  Google Scholar 

  67. Neelakantan P (2022) Analyzing the best machine learning algorithm for plant disease classification. Mater Today Proc

  68. Nilsson H-E (1995) Remote sensing and image analysis in plant pathology. Available: www.annualreviews.org. Accessed 17 Mar 2023

  69. Ning X, Tian W, Yu Z, Li W, Bai X, Wang Y (2022) HCFNN: High-order coverage function neural network for image classification. Pattern Recog 131:108873. https://doi.org/10.1016/j.patcog.2022.108873

    Article  Google Scholar 

  70. Ning X, Xu S, Nan F, Zeng Q, Wang C, Cai W, Li W, Jiang Y (2022) Face editing based on facial recognition features. IEEE Trans Cogn Dev Syst 14(5):1547–1558. https://doi.org/10.1109/TCDS.2022.3182650

    Article  Google Scholar 

  71. Oppermann R, Paracchini M (2012) HNV Farming–Central to European Cultural Landscapes and Biodiversity. High Nature Value Farming in Europe: 35 European Countries—Experiences and Perspectives; Verlag Regionalkultur: Ubstadt-Weiher, Germany

  72. Ouhami M, Hafiane A, Es-Saady Y, El Hajji M, Canals R (2021) Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sensing. MDPI AG, Vol. 13

  73. Ozyurp B, Sunol AK, Camurdan MC, Mogilp P, Hall LO (1998) Chemical plant fault diagnosis through a hybrid symbolic-connectionist machine learning approach. Comput Chem Eng 22:299–321

    Article  Google Scholar 

  74. Partel V, Charan Kakarla S, Ampatzidis Y (2019) Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput Electron Agric. 157(December 2018):339–350. https://doi.org/10.1016/j.compag.2018.12.048

    Article  Google Scholar 

  75. Patrício DI, Rieder R (2018) Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput Electron Agric 153(August):69–81. https://doi.org/10.1016/j.compag.2018.08.001

    Article  Google Scholar 

  76. Peng H, Li Z, Zhou Z, Shao Y (2022) Weed detection in paddy field using an improved RetinaNet network. Comput Electron Agric. 199:107179. https://doi.org/10.1016/J.COMPAG.2022.107179

    Article  Google Scholar 

  77. Pérez AJ, Pez FL, Benlloch JV, Christensen S (2000) Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture. Vol. 25. Available from: www.elsevier.com/locate/compag. Accessed 17 Mar 2023

  78. Prasad BR, Ramashri T, Naidu KR (2020) Vectored machine learning rearing process: Early Detection of leaf diseases. J Sci Ind Res 79(7):619–625

    Google Scholar 

  79. Pritam Patil MC, Patil DD, Subramanium P (2020) Detection and Identification of Rice Leaf Diseases using Multiclass SVM. Int Res J Eng Technol. Available from: www.irjet.net. Accessed 17 Mar 2023

  80. Pushpanathan K, Hanafi M, Mashohor S, FazlilIlahi WF (2021) Machine learning in medicinal plants recognition: a review. Artif Intell Rev 54(1):305–327. https://doi.org/10.1007/s10462-020-09847-0

    Article  Google Scholar 

  81. Raza SEA, Prince G, Clarkson JP, Rajpoot NM (2015) Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS One. 10(4)

  82. Römer C, Bürling K, Hunsche M, Rumpf T, Noga G, Plümer L (2011) Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with Support Vector Machines. Comput Electron Agric 79(2):180–188

    Article  Google Scholar 

  83. Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: Maintaining food security under growing scarcity. Annu Rev Environ Resour 34:205–222

    Article  Google Scholar 

  84. Rumpf T, Mahlein AK, Steiner U, Oerke EC, Dehne HW, Plümer L (2010) Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput Electron Agric 74(1):91–99

    Article  Google Scholar 

  85. Saggi MK, Jain S (2019) Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput Electron Agric 156:387–398. https://doi.org/10.1016/j.compag.2018.11.031

    Article  Google Scholar 

  86. Saleem R, Shah JH, Sharif M, Yasmin M, Yong HS, Cha J (2021) Mango leaf disease recognition and classification using novel segmentation and vein pattern technique. Appl Sci. 11(24)

  87. Samuel AL (1959) Some Studies in Machine Learning Using the Game of Checkers. IBM J Res Dev 44(1):206–226. https://doi.org/10.1147/rd.441.0206

    Article  MathSciNet  Google Scholar 

  88. dos Santos Ferreira A, Freitas DM, da Silva GG, Pistori H, Folhes MT (2019) Unsupervised deep learning and semi-automatic data labeling in weed discrimination. Comput Electron Agric. 165. https://doi.org/10.1016/j.compag.2019.104963

  89. Shrivastava VK, Pradhan MK (2021) Rice plant disease classification using color features: a machine learning paradigm. J Plant Pathol 103(1):17–26

    Article  Google Scholar 

  90. Silva DM, Bernardin T, Fanton K, Nepaul R, Pádua L, Sousa JJ, et al. (2021) Automatic detection of Flavescense Dorée grapevine disease in hyperspectral images using machine learning. In: Procedia Computer Science. Elsevier B.V.; 125–32

  91. Sobiyaa P, Jayareka KS, Maheshkumar K, Naveena S, Rao KS (2022) Paddy disease classification using machine learning technique. Mater Today Proc

  92. Soltani N et al (2016) Potential Corn Yield Losses from Weeds in North America. Weed Technol 30(4):979–984. https://doi.org/10.1614/wt-d-16-00046.1

    Article  MathSciNet  Google Scholar 

  93. Song X, Zhang G, Liu F, Li D, Zhao Y, Yang J (2016) Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. J Arid Land 8(5):734–748. https://doi.org/10.1007/s40333-016-0049-0

    Article  Google Scholar 

  94. Sonka ST (2016) Big data: Fueling the next evolution of agricultural innovation. J Innov Manag 4(1):114–136. https://doi.org/10.24840/2183-0606_004.001_0008

    Article  Google Scholar 

  95. Sørensen CAG, Kateris D, Bochtis D (2019) ICT Innovations and Smart Farming. Commun Comput Inf Sci 953:1–19. https://doi.org/10.1007/978-3-030-12998-9_1

    Article  Google Scholar 

  96. Sowmya BJ, Shetty C, Seema S, Srinivasa KG (2020) Chapter 7 - Utility system for premature plant disease detection using machine learning. Siddhartha Bhattacharyya VSDGAK, editor. 149–172

  97. Su WH (2020) Advanced machine learning in point spectroscopy, rgb-and hyperspectral-imaging for automatic discriminations of crops and weeds: A review. Smart Cities 3(3):767–792. https://doi.org/10.3390/smartcities3030039

    Article  Google Scholar 

  98. Subeesh A et al (2022) Deep convolutional neural network models for weed detection in polyhouse grown bell peppers. Artif Intell Agric 6:47–54. https://doi.org/10.1016/j.aiia.2022.01.002

    Article  Google Scholar 

  99. Sundmaeker H, Verdouw CN, Wolfert J (2016) Freire LP (2016) Internet of Food and Farm 2020. In: Vermesan O, Friess P (eds) Digitising the Industry. River Publishers, Ljubljana, Slovenia, pp 129–150

    Google Scholar 

  100. Sunil GC, Zhang Y, Koparan C, Ahmed MR, Howatt K, Sun X (2022) Weed and crop species classification using computer vision and deep learning technologies in greenhouse conditions. J Agric Food Res. 9(June):100325. https://doi.org/10.1016/j.jafr.2022.100325

    Article  Google Scholar 

  101. Tang J, Arvor D, Corpetti T, Tang P (2021) Mapping center pivot irrigation systems in the southern amazon from sentinel-2 images. Water (Switzerland) 13(3):1–17. https://doi.org/10.3390/w13030298

    Article  Google Scholar 

  102. Thenmozhi K, Reddy US (2019) Crop pest classification based on deep convolutional neural network and transfer learning. Comput Electron Agric. 164(June):104906. https://doi.org/10.1016/j.compag.2019.104906

    Article  Google Scholar 

  103. Tian K, Li J, Zeng J, Evans A, Zhang L (2019) Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm. Comput Electron Agric.165

  104. Vázquez-Hernández MC, Parola-Contreras I, Montoya-Gómez LM, Torres-Pacheco I, Schwarz D, Guevara-González RG (2019) Eustressors: Chemical and physical stress factors used to enhance vegetables production. Sci Hortic (Amsterdam) 250:223–229. https://doi.org/10.1016/j.scienta.2019.02.053

    Article  Google Scholar 

  105. Virnodkar SS, Pachghare VK, Patil VC, Jha SK (2020) Remote sensing and machine learning for crop water stress determination in various crops: a critical review. 21(5). Springer US. https://doi.org/10.1007/s11119-020-09711-9

  106. Wäldchen J, Rzanny M, Seeland M, Mäder P (2018) Automated plant species identification—Trends and future directions. PLoS Comput Biol 14(4):1–19. https://doi.org/10.1371/journal.pcbi.1005993

    Article  Google Scholar 

  107. Wang C, Wang X, Zhang J, Zhang L, Bai X, Ning X, Zhou J, Hancock E (2022) Uncertainty Estimation for Stereo Matching Based on Evidential Deep Learning. Pattern Recog 124:108498. https://doi.org/10.1016/j.patcog.2021.108498

    Article  Google Scholar 

  108. Wang A, Xu Y, Wei X, Cui B (2020) Semantic Segmentation of Crop and Weed using an Encoder-Decoder Network and Image Enhancement Method under Uncontrolled Outdoor Illumination. IEEE Access 8:81724–81734. https://doi.org/10.1109/ACCESS.2020.2991354

    Article  Google Scholar 

  109. Wang A, Zhang W, Wei X (2019) A review on weed detection using ground-based machine vision and image processing techniques. Comput Electron Agric 158(January):226–240. https://doi.org/10.1016/j.compag.2019.02.005

    Article  Google Scholar 

  110. Wen Z, Tao Y (1999) Building a rule-based machine-vision system for defect inspection on apple sorting and packing lines. Expert Syst Appl 16(3):307–313

    Article  Google Scholar 

  111. Xu G, Zhang F, Shah SG, Ye Y, Mao H (2011) Use of leaf color images to identify nitrogen and potassium deficient tomatoes. Pattern Recognit Lett 32(11):1584–1590. https://doi.org/10.1016/j.patrec.2011.04.020

    Article  Google Scholar 

  112. Yashodha G, Shalini D (2020) An integrated approach for predicting and broadcasting tea leaf disease at early stage using IoT with machine learning - A review. Mater Today Proc. 37(Part 2):484–488. https://doi.org/10.1016/j.matpr.2020.05.458

    Article  Google Scholar 

  113. Yuan Y, Chen L, Wu H, Li L (2022) Advanced agricultural disease image recognition technologies: A review. Inf Process Agric 9(1):48–59. https://doi.org/10.1016/j.inpa.2021.01.003

    Article  Google Scholar 

  114. Zamani AS, Anand L, Rane KP, Prabhu P, Buttar AM, Pallathadka H, et al. (2022) Performance of Machine Learning and Image Processing in Plant Leaf Disease Detection. J Food Qual. 2022

  115. Zecca F (2019) The Use of Internet of Things for the Sustainability of the Agricultural Sector: The Case of Climate Smart Agriculture. Int J Civ Eng Technol, 10(03): 494–501: http://www.iaeme.com/IJCIET/index.asp

  116. Zhou J, Fu X, Zhou S, Zhou J, Ye H, Nguyen HT (2019) Automated segmentation of soybean plants from 3D point cloud using machine learning. Comput Electron Agric 162:143–153

    Article  Google Scholar 

  117. Zhou R, Kaneko S, Tanaka F, Kayamori M, Shimizu M (2014) Disease detection of Cercospora Leaf Spot in sugar beet by robust template matching. Comput Electron Agric 108:58–70

    Article  Google Scholar 

  118. Zou K, Ge L, Zhou H, Zhang C, Li W (2021) Broccoli seedling pest damage degree evaluation based on machine learning combined with color and shape features. Inf Process Agric 8(4):505–514

    Google Scholar 

  119. Zubler AV, Yoon JY (2020) Proximal Methods for Plant Stress Detection Using Optical Sensors and Machine Learning. Biosensors. 10(12), https://doi.org/10.3390/BIOS10120193

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishana Attri.

Ethics declarations

Conflicts of interests/Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Lalit Kumar Awasthi and Teek Parval Sharma contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attri, I., Awasthi, L.K. & Sharma, T.P. Machine learning in agriculture: a review of crop management applications. Multimed Tools Appl 83, 12875–12915 (2024). https://doi.org/10.1007/s11042-023-16105-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16105-2

Keywords

Navigation