Skip to main content
Log in

Clean processing for direct signal cancellation using sparse representation in passive synthetic Aperture Radar based on DVB-T Signal

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new method of clean processing for cancelling direct signal from the reference channel signal using Sparse Representation (SR) in a Bistatic Passive Synthetic Aperture Radar (BPSAR) based on Digital Video Broadcasting - Terrestrial (DVB-T) signal, whose transmitter is stationary and receiver is moving. This paper develops the system model of BPSAR in presence of the direct signal interference and then proposes an SR based algorithm to cancel it. The sidelobe artifact of strong targets is another problem in passive radar imagery which degrades the quality of passive SAR images. The proposed method considers the cancellation of sidelobe effects of strong targets too. Experimental results indicate that the proposed algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8.
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Anghel A, Cacoveanu R, Moldovan AS, Popescu AA, Datcu M, Serban A (2016) Simplified bistatic SAR imaging with a fixed receiver and TerraSAR-X as transmitter of opportunity First results. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, pp 2094–2097

    Google Scholar 

  2. Argenti F, Lapini A, Alparone L (2013) A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci Remote Sens Mag 1(3):6–35

    Article  Google Scholar 

  3. Arroyo JR, Jackson JA (2013) Collecting and Processing WiMAX Ground Returns for SAR Imaging. IEEE Radar conference, Ottawa, pp 1–6

    Google Scholar 

  4. Asadipooya A, Samadi S, Moradikia M, Mohseni R (2021) Majorization-Minimization approach for real-time enhancement of sparsity-driven SAR imaging. Real-Time Image Proc 18(3):1–15

    Google Scholar 

  5. Bahmani S, Raj B, Boufounos PT (2013) Greedy Sparsity-constrained Optimization. J Mach Learn Res 14(1):807–841

    MathSciNet  Google Scholar 

  6. Blumensath T, Yaghoobi M, Davies M (2007) Iterative Hard Thresholding and L0 Regularization. IEEE International Conference on AcoustiSR. Speech and Signal Processing, Honolulu, pp 1520–6149

    Google Scholar 

  7. Carrara W, Goodman R, Majewski R (1995) Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House, MA

  8. Cassola M, Prats R, Schulze P, Ramon D, Steinbrecher NT, Marotti U, Nannini L, Younis M, Dokker M, Zink PL, Reigber M, Krieger A, Moreira G (2012) First bistatic SAR experiments with TanDEM-X. IEEE Geosci Remote Sensing Lett 9(1):33–37

    Article  Google Scholar 

  9. Chen SS, Donoho DL, Saunders MA (2001) Atomic Decomposition by Basis Pursuit. Soc Ind Appl MathSR 43(1):129–159

    MathSciNet  Google Scholar 

  10. Evers A, Jackson J (2014) Experimental passive SAR imaging exploiting LTE, DVB, and DAB signals. IEEE Radar conference, Cincinnati, pp 0680–0685

    Google Scholar 

  11. Fang Y, Atkinson G, Sayin A, Chen J (2020) Improved passive SAR imaging with DVB-T transmissions. IEEE Trans Geosci Remote Sens 58(7):5066–5076

    Article  Google Scholar 

  12. Final draft European Telecommunications Standards Institute (ETSI) EN 300 744 V1.5.1 (2004-06), European Standard (Telecommunications series), Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, European Broadcasting Union- Union European Radio-Television (EBU-UER)

  13. Gromek D, Krysik P, Kulpa K, Samczynski P, Malanowski M (2014) Ground-based mobile passive imagery based on a DVB-T signal of opportunity. International Radar Conference (Radar), Lille, pp 1–4

    Google Scholar 

  14. Gromek D, Samczynski P, Kulpa K, Misiurewicz J, Gromek A (2014) Analysis of range migration and Doppler history for an airborne passive bistatic SAR radarf. International Radar Symposium (IRS), Gdansk, Poland, pp 1–6

    Google Scholar 

  15. Gromek D, Samczynski P, Kulpa K, Krysik P, Malanowski M (2014) Initial results of passive SAR imaging using a DVB-T based airborne radar receiver. European Radar Conference (EuRAD), Rome, pp 137–140

    Google Scholar 

  16. Gromek D, Radecki K, Drozdowicz J, Samczynski P, Szabatin J (2019) Passive SAR imaging using DVB-T illumination for airborne applications. IET Radar Sonar Navig 13(2):213–221

    Article  Google Scholar 

  17. Iglesias R, Mallorqui JJ (2013) Side-Lobe cancelation in DInSAR pixel selection with SVA. IEEE Geosc Remote Sens Lett 10(4):667–671

    Article  Google Scholar 

  18. Krysik P, Kulpa K (2012) The use of a GSM-based passive radar for sea target detection. European Radar Conference (EuRAD), Amsterdam, pp 142–145

    Google Scholar 

  19. Krysik P, Maslikowski L, Samczynski P, Kurowska A (2013) Bistatic ground-based passive SAR imaging using TerraSAR-X as an illuminator of opportunity. IEEE International conference on radar, Adelaide, pp 39–42

    Google Scholar 

  20. Kulpa K, Samczynski P, Malanowski M, Maslikowski L, Kubica V (2013) The use of CLEAN processing for passive SAR image creation. IEEE Radar conference, Ottawa, pp 1–6

    Google Scholar 

  21. Ladebusch U, Liss CA (2006) Terrestrial DVB: A Broadcast Technology for Stationary Potable Mobile Use. Proc IEEE 94(1):183–193

    Article  Google Scholar 

  22. Lee JS, Jurkevich I, Dewaele P, Wambacq P, Oosterlinck A (1994) Speckle filtering of synthetic aperture radar images: a review. Remote Sens 8(4):313–340

    Google Scholar 

  23. Roucart S (2012) Sparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants. Approximation Theory XIII: San Antonio 2010. Springer New York, New York, pp 65–77

    Google Scholar 

  24. Samadi S, Cetin M, Masnadi-Shirazi MA (2011) Sparse representation based SAR imaging. IET Radar Sonar Navig 5(2):182–193

    Article  Google Scholar 

  25. Santi F, Bucciarelli M, Pastina D, Antoniou M (2015) CLEAN technique for passive bistatic and multistatic SAR with GNSS transmitters. IEEE Radar conference, Arlington, pp 1–6

    Google Scholar 

  26. Tropp JA, Gilbert AC (2007) Signal Recovery From Random Measurements via Orthogonal Matching pursuit. IEEE Trans Signal Proc 63(10):2572–2581

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Samadi.

Ethics declarations

Conflicts of interest

The authors wish to confirm that there are not known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, F., Samadi, S. & Mohseni, R. Clean processing for direct signal cancellation using sparse representation in passive synthetic Aperture Radar based on DVB-T Signal. Multimed Tools Appl 83, 13315–13336 (2024). https://doi.org/10.1007/s11042-023-15997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15997-4

Keywords

Navigation