Skip to main content
Log in

Multiple kernel clustering with structure-preserving and block diagonal property

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

It is well known that graph-based multiple kernel clustering (GMKC) methods improve the clustering performance by integrating multiple kernel learning and graph-based clustering. However, existing GMKC methods either do not consider the global and local structure of data in kernel space simultaneously, or ignore block diagonal property of the affinity matrix, thus impairing the final clustering performance greatly. To address this issue, in this paper we propose a novel method named multiple kernel clustering with structure-preserving and block diagonal property (SBDMKC) by combining GMKC and block diagonal regularizer. Typically, the local structure-preserving regularization term is an accurate measurement for the similarity between data in kernel space, rather than original space. Furthermore, the affinity matrix is encouraged to be block diagonal by a soft regularizer, which helps to achieve good data clustering. In addition, a simple kernel weight strategy is given, which can automatically weight each base kernel to find an optimal consensus kernel. Experimental results on the ten benchmark data sets show that our method outperforms the nine state-of-the-art clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dattorro J (2010) Convex optimization and euclidean distance geometry

  2. Du L, Zhou P, Shi L, Wang H, Fan M, Wang W, Shen Y (2015) Robust multiple kernel k-means using l21-norm. In: Proceedings of the 24th International joint conference on artificial intelligence, pp 3476–3482

  3. Han Y, Yang K, Yang Y, Ma Y (2018) On the impact of regularization variation on localized multiple kernel learning. IEEE Trans Neural Networks Learn Syst 29(1):2625–2630. https://doi.org/10.1109/TNNLS.2017.2688365

    Article  MathSciNet  Google Scholar 

  4. Huang H, Chuang Y, Chen C (2012) Affinity aggregation for spectral clustering. In: IEEE Conference on computer vision and pattern recognition, pp 773–780. https://doi.org/10.1109/CVPR.2012.6247748

  5. Huang H, Chuang Y, Chen C (2012) Multiple kernel fuzzy clustering. IEEE Trans Fuzzy Syst 20(1):120–134. https://doi.org/10.1109/TFUZZ.2011.2170175

    Article  Google Scholar 

  6. Huang H, Shi G, He H, Duan Y, Luo F (2020) Dimensionality reduction of hyperspectral imagery based on spatial-spectral manifold learning. IEEE Trans Cybern 50(6):2604–2616. https://doi.org/10.1109/TCYB.2019.2905793

    Article  Google Scholar 

  7. Iliadis M, Wang H, Molina R, Katsaggelos AK (2017) Robust and low-rank representation for fast face identification with occlusions. IEEE Trans Image Process 26(5):2203–2218. https://doi.org/10.1109/TIP.2017.2675206

    Article  MathSciNet  Google Scholar 

  8. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: A review. ACM Comput Surv 31(3):264–323. https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  9. Kang Z, Lu X, Yi J, Xu Z (2018) Self-weighted multiple kernel learning for graph-based clustering and semi-supervised classification. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI, pp 2312–2318. https://doi.org/10.24963/ijcai.2018/320

  10. Kang Z, Peng C, Cheng Q, Xu Z (2018) Unified spectral clustering with optimal graph. In: Proceedings of the 32nd AAAI Conference on artificial intelligence, (AAAI-18), pp 3366–3373

  11. Kang Z, Shi G, Huang S, Chen W, Pu X, Zhou JT, Xu Z (2020) Multi-graph fusion for multi-view spectral clustering. Knowl Based Syst, vol 189. https://doi.org/10.1016/j.knosys.2019.105102

  12. Kang Z, Wen L, Chen W, Xu Z (2019) Low-rank kernel learning for graph-based clustering. Knowl Based Syst 163:510–517. https://doi.org/10.1016/j.knosys.2018.09.009

    Article  Google Scholar 

  13. Li M, Liu X, Wang L, Dou Y, Yin J, Zhu E (2016) Multiple kernel clustering with local kernel alignment maximization. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI, pp 1704–1710

  14. Li B, Lu H, Zhang Y, Lin Z, Wu W (2019) Subspace clustering under complex noise. IEEE Trans Circuits Syst Video Technol 29(4):930–940. https://doi.org/10.1109/TCSVT.2018.2793359

    Article  Google Scholar 

  15. Liu B, Huang L, Wang C, Fan S, Yu PS (2021) Adaptively weighted multiview proximity learning for clustering. IEEE Trans Cybern 51(3):1571–1585. https://doi.org/10.1109/TCYB.2019.2955388

    Article  Google Scholar 

  16. Lu C, Feng J, Lin Z, Mei T, Yan S (2019) Subspace clustering by block diagonal representation. IEEE Trans Pattern Anal Mach Intell 41 (2):487–501. https://doi.org/10.1109/TPAMI.2018.2794348

    Article  Google Scholar 

  17. Luxburg UV (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. https://doi.org/10.1007/s11222-007-9033-z

    Article  MathSciNet  Google Scholar 

  18. Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: Analysis and an algorithm. In: Advances in neural information processing systems 14 [neural information processing systems: natural and synthetic, NIPS], pp 849–856

  19. Nie F, Cai G, Li J, Li X (2018) Auto-weighted multi-view learning for image clustering and semi-supervised classification. IEEE Trans Image Process 27(3):1501–1511. https://doi.org/10.1109/TIP.2017.2754939

    Article  MathSciNet  Google Scholar 

  20. Nie F, Li J, Li X (2016) Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence, IJCAI, pp 1881–1887

  21. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: The 20th ACM SIGKDD International conference on knowledge discovery and data mining, KDD, pp 977–986. https://doi.org/10.1145/2623330.2623726

  22. Nie F, Wang X, Jordan MI, Huang H (2016) The constrained laplacian rank algorithm for graph-based clustering. In: Proceedings of the 38th AAAI Conference on artificial intelligence, pp 1969–1976

  23. Ou Q, Gao L, Zhu E (2021) Multiple kernel k-means with low-rank neighborhood kernel. IEEE Access 9:3291–3300. https://doi.org/10.1109/ACCESS.2020.3041764

    Article  Google Scholar 

  24. Pang Y, Xie J, Nie F, Li X (2020) Spectral clustering by joint spectral embedding and spectral rotation. IEEE Trans Cybern 50(1):247–258. https://doi.org/10.1109/TCYB.2018.2868742

    Article  Google Scholar 

  25. Ren Z, Li H, Yang C, Sun Q (2020) Multiple kernel subspace clustering with local structural graph and low-rank consensus kernel learning. Knowl Based Syst. vol 188. https://doi.org/10.1016/j.knosys.2019.105040

  26. Ren Z, Sun Q (2021) Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Networks Learn Syst 32 (5):1839–1851. https://doi.org/10.1109/TNNLS.2020.2991366

    Article  MathSciNet  Google Scholar 

  27. Ren Z, Yang SX, Sun Q, Wang T (2021) Consensus affinity graph learning for multiple kernel clustering. IEEE Trans Cybern 51(6):3273–3284. https://doi.org/10.1109/TCYB.2020.3000947

    Article  Google Scholar 

  28. Ren Z, Yang SX, Sun Q, Wang T (2021) Consensus affinity graph learning for multiple kernel clustering. IEEE Trans Cybern 51(6):3273–3284. https://doi.org/10.1109/TCYB.2020.3000947

    Article  Google Scholar 

  29. Schölkopf B, Smola AJ, Müller K (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319. https://doi.org/10.1162/089976698300017467

    Article  Google Scholar 

  30. Wang C, Zhu E, Liu X, Gao L, Yin J, Hu N (2018) Multiple kernel clustering with global and local structure alignment. IEEE Access 6:77911–77920. https://doi.org/10.1109/ACCESS.2018.2884441

    Article  Google Scholar 

  31. Wen J, Fang X, Xu Y, Tian C, Fei L (2018) Low-rank representation with adaptive graph regularization. Neural Netw 108:83–96. https://doi.org/10.1016/j.neunet.2018.08.007

    Article  Google Scholar 

  32. Xie X, Guo X, Liu G, Wang J (2018) Implicit block diagonal low-rank representation. IEEE Trans Image Process 27 (1):477–489. https://doi.org/10.1109/TIP.2017.2764262

    Article  MathSciNet  Google Scholar 

  33. Yang C, Ren Z, Sun Q, Wu M, Yin M, Sun Y (2019) Joint correntropy metric weighting and block diagonal regularizer for robust multiple kernel subspace clustering. Inf Sci 500:48–66. https://doi.org/10.1016/j.ins.2019.05.063

    Article  MathSciNet  Google Scholar 

  34. Zhan K, Nie F, Wang J, Yang Y (2019) Multiview consensus graph clustering. IEEE Trans Image Process 28(3):1261–1270. https://doi.org/10.1109/TIP.2018.2877335

    Article  MathSciNet  Google Scholar 

  35. Zhan K, Niu C, Chen C, Nie F, Zhang C, Yang Y (2019) Graph structure fusion for multiview clustering. IEEE Trans Knowl Data Eng 31 (10):1984–1993. https://doi.org/10.1109/TKDE.2018.2872061

    Article  Google Scholar 

  36. Zhou S, Liu X, Li M, Zhu E, Liu L, Zhang C, Yin J (2020) Multiple kernel clustering with neighbor-kernel subspace segmentation. IEEE Trans Neural Networks Learn Syst 31(4):1351–1362. https://doi.org/10.1109/TNNLS.2019.2919900

    Article  MathSciNet  Google Scholar 

  37. Zhu X, Zhang S, Hu R, Zhu Y, Song J (2018) Local and global structure preservation for robust unsupervised spectral feature selection. IEEE Trans Knowl Data Eng 30(3):517–529. https://doi.org/10.1109/TKDE.2017.2763618

    Article  Google Scholar 

  38. Zhu X, Zhang S, Li Y, Zhang J, Yang L, Fang Y (2019) Low-rank sparse subspace for spectral clustering. IEEE Trans Knowl Data Eng 31 (8):1532–1543. https://doi.org/10.1109/TKDE.2018.2858782

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No: 61862009), the Natural Science Foundation of Guangxi (Grant No: 2018GXNSFAA281314), Guangxi ”Bagui Scholar” Teams for Innovation and Research, the Project of Guangxi Key Lab of Multi-source Information Mining and Security (Grant No: MIMS22-03,19-A-01-02), Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing.

Author information

Authors and Affiliations

Authors

Contributions

Cuiling Chen proposed the idea of SBDMKC method, designed Algorithm 1, and wrote original draft; Zhi Li investigated and validated the feasibility of proposed method, reviewed and edited the draft.

Corresponding author

Correspondence to Zhi Li.

Ethics declarations

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, Z. Multiple kernel clustering with structure-preserving and block diagonal property. Multimed Tools Appl 83, 6425–6445 (2024). https://doi.org/10.1007/s11042-023-15610-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15610-8

Keywords

Navigation