Skip to main content
Log in

Optimized quaternion radial Hahn Moments application to deep learning for the classification of diabetic retinopathy

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new hybrid method of classification of fundus images provided by the Asia–Pacific Tele-Ophthalmology Society via combining the discrete moment quaternion approach, the artificial intelligence approach, and machine learning in order to automatically distinguish the stage of diabetic retinopathy using reduced databases divided into five classes. The proposed method is based on two main phases: the preprocessing phase, in which using the new radial invariant moments of Hahn in a quaternion optimized by the ant colony algorithm, in order to calculate the original n × n image moments. The second phase is devoted to introducing the calculated moments into the proposed convolutional neural network model. The present work will contribute to creating new neural network architectures that take advantage of Hahn's new 2D radial moment descriptive capability in quaternions. The K-fold cross-validation method is used to measure the proposed model's performance. Finally, graphical measures such as receiver operating characteristic and precision-rapple curves plus a confusion matrix are presented. Furthermore, numerical measures are adopted for f1-score, loss and precision. In 1795 images, the AUC yielded 94.58%, 97.02%, 94.87%, 97.83%, and 96.54% for the five classes of healthy, mild, moderate, severe, and proliferative respectively. These results prove that the proposed method can be used to detect and classify diabetic retinopathy at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Antary MT and Arafa Y (2021)“Multi-scale Attention Network for Diabetic Retinopathy Classification,” IEEE Access 9:. https://doi.org/10.1109/ACCESS.2021.3070685.

  2. Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput 55(11):1959–1974. https://doi.org/10.1007/s11517-017-1638-6

    Article  Google Scholar 

  3. Abdulhussain SH, Ramli AR, Al-Haddad SAR, Mahmmod BM, Jassim WA (2017) On Computational Aspects of Tchebichef Polynomials for Higher Polynomial Order. IEEE Access 5:2470–2478. https://doi.org/10.1109/ACCESS.2017.2669218

    Article  Google Scholar 

  4. Adem K, Kiliçarslan S, Cömert O (2019) Classification and diagnosis of cervical cancer with softmax classification with stacked autoencoder. Expert Syst Appl 115:557–564. https://doi.org/10.1016/j.eswa.2018.08.050

    Article  Google Scholar 

  5. Ahmed KT, Jaffar S, Hussain MG, Fareed S, Mehmood A, Choi GS (2021) Maximum Response Deep Learning Using Markov, Retinal Primitive Patch Binding with GoogLeNet VGG-19 for Large Image Retrieval. IEEE Access 9:41934–41957. https://doi.org/10.1109/ACCESS.2021.3063545

    Article  Google Scholar 

  6. Almobarak AO et al (2020) The prevalence and risk factors for systemic hypertension among Sudanese patients with diabetes mellitus: A survey in diabetes healthcare facility. Diabetes Metab Syndr Clin Res Rev 14(6):1607–1611. https://doi.org/10.1016/j.dsx.2020.08.010

    Article  Google Scholar 

  7. Amakdouf H, Zouhri A, EL Mallahi M, and Qjidaa H, (2020) “Color image analysis of quaternion discrete radial Krawtchouk moments,” Multimed. Tools Appl.https://doi.org/10.1007/s11042-020-09120-0

  8. Amakdouf H, Zouhri A, El Mallahi M, Tahiri A, Chenouni D, Qjidaa H (2021) Artificial intelligent classification of biomedical color image using quaternion discrete radial Tchebichef moments. Multimed Tools Appl 80(2):3173–3192. https://doi.org/10.1007/s11042-020-09781-x

    Article  Google Scholar 

  9. Bacanin N, Stoean R, Zivkovic M, Petrovic A, Rashid TA and Bezdan T, (2021)“Performance of a novel chaotic firefly algorithm with enhanced exploration for tackling global optimization problems: Application for dropout regularization,” Mathematics 9(21):. https://doi.org/10.3390/math9212705.

  10. Batta M (2020) Machine learning algorithms a review. Int J Sci Res (IJ) 9(1):381. https://doi.org/10.21275/ART20203995

    Article  Google Scholar 

  11. Bencherqui A, Daoui A, Karmouni H and Qjidaa H (2022) Optimal reconstruction and compression of signals and images by Hahn moments and artificial bee Colony (ABC ) algorithm, Multimedia Tools and Applications

  12. Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. In: Robots and biological systems: towards new bionics?. Springer, Berlin, Heidelberg, p 703–712. https://doi.org/10.1007/978-3-642-58069-7_38

  13. Bewick V, Cheek L, Ball J (2004) Statistics review 13: Receiver operating characteristics curves. Crit Care 8(6):508–512. https://doi.org/10.1186/cc3000

    Article  Google Scholar 

  14. Chen Z, Ho P-H (2019) Global-connected network with generalized ReLU activation. Pattern Recogn 96:106961. https://doi.org/10.1016/j.patcog.2019.07.006

  15. Chen Y et al (2019) Single-pixel compressive imaging based on the transformation of discrete orthogonal Krawtchouk moments. Opt Express 27(21):29838. https://doi.org/10.1364/oe.27.029838

    Article  Google Scholar 

  16. Chen W, Yang B, Li J, Wang J (2020) An approach to detecting diabetic retinopathy based on integrated shallow convolutional neural networks. IEEE Access 8:178552–178562. https://doi.org/10.1109/ACCESS.2020.3027794

    Article  Google Scholar 

  17. Choi KS, Shin JS, Lee JJ, Kim YS, Kim SB, Kim CW (2005) In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract. Biochem Biophys Res Commun 330(4):1299–1305. https://doi.org/10.1016/j.bbrc.2005.03.111

    Article  Google Scholar 

  18. Chong CW, Raveendran P, Mukundan R (2003) Translation invariants of Zernike moments. Pattern Recognit 36(8):1765–1773. https://doi.org/10.1016/S0031-3203(02)00353-9

    Article  MATH  Google Scholar 

  19. Daoui A, Yamni M, El Ogri O, Karmouni H, Sayyouri M, Qjidaa H (2020) “New Algorithm for Large-Sized 2D and 3D Image Reconstruction using Higher-Order Hahn Moments.” Circuits Syst Signal Process 39(9):4552–4577. https://doi.org/10.1007/s00034-020-01384-z

    Article  MATH  Google Scholar 

  20. Deeba K, Amutha B (2020) ResNet-deep neural network architecture for leaf disease classification. Microprocess Microsyst :103364. https://doi.org/10.1016/j.micpro.2020.103364

  21. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: Optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 261:29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  22. Dubey V (2014) “Quaternion Fourier Transform for Colour Images. Ijcsit 5(3):4411–4416 https://www.ijcsit.com

    Google Scholar 

  23. El Mallahi M, Zouhri A, Qjidaa H (2018) Radial Meixner Moment Invariants for 2D and 3D Image Recognition. Pattern Recognit Image Anal 28(2):207–216. https://doi.org/10.1134/S1054661818020128

    Article  Google Scholar 

  24. Gavrilov AD, Jordache A, Vasdani M, Deng J (2018) Preventing model overfitting and underfitting in convolutional neural networks. Int J Softw Sci Comput Intell (IJSSCI) 10(4):19–28. https://doi.org/10.4018/ijssci.2018100102

  25. Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight CNN for Diabetic Retinopathy classification from fundus images. Biomed Signal Process Control 62(August):102115. https://doi.org/10.1016/j.bspc.2020.102115

    Article  Google Scholar 

  26. Giancardo L et al (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226. https://doi.org/10.1016/j.media.2011.07.004

    Article  Google Scholar 

  27. Gonzalez TF (2007) “Handbook of approximation algorithms and metaheuristics,” pp. 1–1432. https://doi.org/10.1201/9781420010749.

  28. Gupta S, Thakur S and Gupta A (2022) Optimized hybrid machine learning approach for smartphone based diabetic retinopathy detection

  29. He K, Zhang X, Ren S, Sun J (2016) 2016 “Deep residual learning for image recognition”, Proc IEEE Comput Soc Conf Comput Vis. Pattern Recognit 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  30. Idan ZN, Abdulhussain SH, Al-Haddad SAR (2020) A New Separable Moments Based on Tchebichef-Krawtchouk Polynomials. IEEE Access 8:41013–41025. https://doi.org/10.1109/ACCESS.2020.2977305

    Article  Google Scholar 

  31. Jahid T, Karmouni H, Hmimid A, Sayyouri M, Qjidaa H (2019) Fast computation of Charlier moments and its inverses using Clenshaw’s recurrence formula for image analysis. Multimed Tools Appl 78:12183–12201. https://doi.org/10.1007/s11042-018-6757-z

  32. Kandhasamy JP, Balamurali S, Kadry S, Ramasamy LK (2020) Diagnosis of diabetic retinopathy using multi level set segmentation algorithm with feature extraction using SVM with selective features. Multimed Tools Appl 79(15–16):10581–10596. https://doi.org/10.1007/s11042-019-7485-8

    Article  Google Scholar 

  33. Khoshgoftaar TM, Allen EB (2001) Controlling overfitting in classification-tree models of software quality. Empir Softw Eng 6(1):59–79. https://doi.org/10.1023/A:1009803004576

    Article  MATH  Google Scholar 

  34. Kusrini K et al (2020) Data augmentation for automated pest classification in Mango farms. Comput Electron Agric 179:105842. https://doi.org/10.1016/j.compag.2020.105842

    Article  Google Scholar 

  35. Lal S et al (2021) Adversarial attack and defence through adversarial training and feature fusion for diabetic retinopathy recognition. Sensors 21(11):1–21. https://doi.org/10.3390/s21113922

    Article  Google Scholar 

  36. Lin G, Shen W (2018) Research on convolutional neural network based on improved Relu piecewise activation function. Procedia Comput Sci 131:977–984. https://doi.org/10.1016/j.procs.2018.04.239

    Article  Google Scholar 

  37. Malakar S, Ghosh M, Bhowmik S, Sarkar R, Nasipuri M (2020) A GA based hierarchical feature selection approach for handwritten word recognition. Neural Comput Appl 32(7):2533–2552. https://doi.org/10.1007/s00521-018-3937-8

    Article  Google Scholar 

  38. Maqsood S, Damaševičius R, and Maskeliūnas R (2021) “Hemorrhage detection based on 3d cnn deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients,” Sensors 21(11):. https://doi.org/10.3390/s21113865.

  39. Markoulidakis I, Rallis I, Georgoulas I, Kopsiaftis G, Doulamis A, Doulamis N (2021) Multiclass confusion matrix reduction method and its application on net promoter score classification problem. Technologies 9(4):81. https://doi.org/10.3390/technologies9040081

    Article  Google Scholar 

  40. Ohira M, Ito D, Shimizu T, Shibata M, Ohde H, Suzuki N (2009) Retinopathy: An overlooked adverse effect of interferon-beta treatment of multiple sclerosis. Keio J Med 58(1):54–56. https://doi.org/10.2302/kjm.58.54

    Article  Google Scholar 

  41. Oke SA (2008) A literature review on artificial intelligence. Int J Inf Manag Sci 19(4):535–570

    MathSciNet  MATH  Google Scholar 

  42. Orlando JI, Prokofyeva E, del Fresno M, Blaschko MB (2018) An ensemble deep learning based approach for red lesion detection in fundus images. Comput Methods Programs Biomed 153:115–127. https://doi.org/10.1016/j.cmpb.2017.10.017

    Article  Google Scholar 

  43. Park S, Baek Lee S, Park J (2020) Data augmentation method for improving the accuracy of human pose estimation with cropped images. Pattern Recognit Lett 136:244–250. https://doi.org/10.1016/j.patrec.2020.06.015

    Article  Google Scholar 

  44. Pei SC, Cheng CM (1997) Novel block truncation coding of image sequences for limitedcolor display. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 1311:164–171. https://doi.org/10.1007/3-540-63508-4_119

    Article  Google Scholar 

  45. Perl YS et al (2020) Data augmentation based on dynamical systems for the classification of brain states. Chaos Solitons Fractals 139:110069. https://doi.org/10.1016/j.chaos.2020.110069

    Article  MathSciNet  Google Scholar 

  46. Pires R, Jelinek HF, Wainer J, Valle E and Rocha A (2014) “Advancing bag-of-visual-words representations for lesion classification in retinal images,” PLoS One, 9(6):. https://doi.org/10.1371/journal.pone.0096814.

  47. Poh S, Mohamed Abdul RBB, Lamoureux EL, Wong TY, Sabanayagam C (2016) Metabolic syndrome and eye diseases. Diab Res Clin Pract 113:86–100. https://doi.org/10.1016/j.diabres.2016.01.016

    Article  Google Scholar 

  48. Rahman MM, Davis DN (2013) Addressing the Class Imbalance Problem in Medical Datasets. Int J Mach Learn Comput 2013:224–228. https://doi.org/10.7763/ijmlc.2013.v3.307

    Article  Google Scholar 

  49. Ramasamy LK, Padinjappurathu SG, Kadry S, Damaševičius R (2021) Detection of Diabetic Retinopathy Using a Fusion of Textural and Ridgelet Features of Retinal Images and Sequential Minimal Optimization Classifier. PeerJ Comput Sci 7:1–21. https://doi.org/10.7717/PEERJ-CS.456

    Article  Google Scholar 

  50. Reddy SSK (2020) Diagnosis of Diabetes Mellitus in Older Adults. Clin Geriatr Med 36(3):379–384. https://doi.org/10.1016/j.cger.2020.04.011

    Article  Google Scholar 

  51. Saman G et al (2020) Automatic detection and severity classification of diabetic retinopathy. Multimed Tools Appl 79(43–44):31803–31817. https://doi.org/10.1007/s11042-020-09118-8

    Article  Google Scholar 

  52. Saxena G, Verma DK, Paraye A, Rajan A, Rawat A (2020) Improved and robust deep learning agent for preliminary detection of diabetic retinopathy using public datasets. Intell-Based Med 3:100022. https://doi.org/10.1016/j.ibmed.2020.100022

  53. Sayyouri M, Hmimid A, Qjidaa H (2013) Improving the performance of image classification by Hahn moment invariants. J Opt Soc Am A 30(11):2381. https://doi.org/10.1364/josaa.30.002381

    Article  Google Scholar 

  54. Shaban K et al (2020) A convolutional neural network for the screening and staging of diabetic retinopathy. PLoS One 15(6 June):1–13. https://doi.org/10.1371/journal.pone.0233514

    Article  Google Scholar 

  55. Shiferaw WS et al (2020) Glycated hemoglobin A1C level and the risk of diabetic retinopathy in Africa: A systematic review and meta-analysis. Diabetes Metab Syndr Clin Res Rev 14(6):1941–1949. https://doi.org/10.1016/j.dsx.2020.10.003

    Article  Google Scholar 

  56. Taheri M, Lim N, and Lederer J (2016) “Balancing Statistical and Computational Precision and Applications to Penalized Linear Regression with Group Sparsity,” pp. 233–240, [Online]. Available: http://arxiv.org/abs/1609.07195.

  57. Tahiri MA, Karmouni H, Sayyouri M and Qjidaa H (2022)“2D and 3D image localization, compression and reconstruction using new hybrid moments,” Multidimens Syst Signal Processhttps://doi.org/10.1007/s11045-021-00810-y

  58. Tahiri MA, Karmouni H, Sayyouri M and Qjidaa H (2020) “Stable Computation of Hahn Polynomials for Higher Polynomial Order,” In 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 0–6 https://doi.org/10.1109/ISCV49265.2020.9204118

  59. Wan S, Liang Y, Zhang Y (2018) Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng 72:274–282. https://doi.org/10.1016/j.compeleceng.2018.07.042

    Article  Google Scholar 

  60. WanG J, Perez L et al (2017) The effectiveness of data augmentation in image classification using deep learning. Convolutional Neural Networks Vis. Recognit 11(2017):1–8. https://doi.org/10.48550/arXiv.1712.04621

  61. Wang Z, Yin Y, Shi J, Fang W, Li H, Wang X (2017) Zoom-in-net: Deep mining lesions for diabetic retinopathy detection. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 10435(LNCS):267–275. https://doi.org/10.1007/978-3-319-66179-7_31

    Article  Google Scholar 

  62. Wen X (2020) Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine. Appl Soft Comput J 94:106476. https://doi.org/10.1016/j.asoc.2020.106476

    Article  Google Scholar 

  63. Wu B, Zhu W, Shi F, Zhu S, Chen X (2017) Automatic detection of microaneurysms in retinal fundus images. Comput Med Imaging Graph 55:106–112. https://doi.org/10.1016/j.compmedimag.2016.08.001

    Article  Google Scholar 

  64. Yamni M et al (2020) Fractional Charlier moments for image reconstruction and image watermarking. Signal Processing 171:107509. https://doi.org/10.1016/j.sigpro.2020.107509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Tahiri.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahiri, M.A., Amakdouf, H., El mallahi, M. et al. Optimized quaternion radial Hahn Moments application to deep learning for the classification of diabetic retinopathy. Multimed Tools Appl 82, 46217–46240 (2023). https://doi.org/10.1007/s11042-023-15582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15582-9

Keywords

Navigation