Skip to main content
Log in

Supervised biadjacency networks for stereo matching

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Convolutional neural network (CNN) based stereo matching methods using cost volume techniques have gained prominence in stereo matching. State-of-the-art cost volume based methods use two weight-sharing feature extractors to respectively extract left and right unary features and then use them to construct cost volume(s). The quality of those unary features is crucial for the subsequent stereo matching. We propose a Supervised Biadjacency-based (SuperB) module to improve their quality by employing supervised biadjacency matrices to embed stereo information into both unary features. Specifically, disparity supervision is imposed on the biadjacency matrices by transforming them into disparity estimations. The SuperB Module can therefore adaptively enhance matched features and suppress unmatched features. Being aware of the stereo correspondence, the resultant stereo-aware features are more discriminative for subsequent cost aggregation and disparity estimation. Experiments show the SuperB Module can be plugged into cost volume based stereo matching models and lower the disparity estimation error. In addition, a scale-adaptive Voxel-wise Selective Fusion (VSF) module is proposed to adaptively aggregate the multi-scale matching costs. The competitive and efficient experimental results on both synthetic and real-world datasets demonstrate the effectiveness of the resultant Supervised Biadjacency Stereo matching networks (SuperBStereo).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets used during the current study are available in SceneFlow (https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html) and KITTI (https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d), other generated data are available from the corresponding author on reasonable request.

References

  1. Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: International conference on learning representations, San Diego

  2. Chabra R, Straub J, Sweeney C, Newcombe R, Fuchs H (2019) StereoDRNet: dilated residual StereoNet. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 11786–11795. https://doi.org/10.1109/CVPR.2019.01206

  3. Chang J -R, Chen Y -S (2018) Pyramid stereo matching network. In: IEEE Conference on computer vision and pattern recognition. IEEE, Salt Lake City, pp 5410–5418. https://doi.org/10.1109/CVPR.2018.00567

  4. Chen L -C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587

  5. Cheng X, Zhong Y, Harandi M T, Dai Y, Chang X, Li H, Drummond T, Ge Z (2020) Hierarchical neural architecture search for deep stereo matching. In: Conference on neural information processing systems, vol 33. Online. Curran Associates, Inc., pp 22158–22169

  6. Diederik K, Jimmy B (2015) Adam: a method for stochastic optimization. In: International conference on learning representations, San Diego

  7. Dosovitskiy A, Fischer P, Ilg E, Hausser P, Hazirbas C, Golkov V, van der Smagt P, Cremers D, Brox T (2015) Flownet: learning optical flow with convolutional networks. In: IEEE International conference on computer vision. IEEE, Santiago, pp 2758–2766. https://doi.org/10.1109/ICCV.2015.316

  8. Duggal S, Wang S, Ma W -C, Hu R, Urtasun R (2019) Deeppruner: learning efficient stereo matching via differentiable PatchMatch. In: IEEE International conference on computer vision. IEEE, Seoul, pp 4384–4393. https://doi.org/10.1109/ICCV.2019.00448

  9. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE conference on computer vision and pattern recognition. IEEE, Providence, pp 3354–3361. https://doi.org/10.1109/CVPR.2012.6248074

  10. Girshick R (2015) Fast r-CNN. In: IEEE International conference on computer vision. IEEE, Santiago, pp 1440–1448. https://doi.org/10.1109/ICCV.2015.169

  11. Guo X, Yang K, Yang W, Wang X, Li H (2019) Group-wise correlation stereo network. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 3268–3277. https://doi.org/10.1109/CVPR.2019.00339

  12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  13. He Y, Yan R, Fragkiadaki K, Yu S -I (2020) Epipolar transformers. In: IEEE conference on computer vision and pattern recognition. IEEE, Seattle, pp 7776–7785. https://doi.org/10.1109/CVPR42600.2020.00780

  14. Hirschmuller H (2008) Stereo processing by semiglobal matching and mutual information. IEEE Trans Pattern Anal Mach Intell 30 (2):328–341. https://doi.org/10.1109/TPAMI.2007.1166

    Article  Google Scholar 

  15. Ilg E, Mayer N, Saikia T, Keuper M, Dosovitskiy A, Brox T (2017) Flownet 2.0: evolution of optical flow estimation with deep networks. In: IEEE Conference on computer vision and pattern recognition. IEEE, Honolulu, pp 1647–1655. https://doi.org/10.1109/CVPR.2017.179

  16. Ji C, Liu G, Zhao D (2022) Monocular 3D object detection via estimation of paired keypoints for autonomous driving. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-11801-3

  17. Kendall A, Martirosyan H, Dasgupta S, Henry P, Kennedy R, Bachrach A, Bry A (2017) End-to-end learning of geometry and context for deep stereo regression. In: IEEE International conference on computer vision. IEEE, Venice, pp 66–75. https://doi.org/10.1109/ICCV.2017.17

  18. Khamis S, Fanello S, Rhemann C, Kowdle A, Valentin J, Izadi S (2018) Stereonet: guided hierarchical refinement for real-time edge-aware depth prediction. In: European conference on computer vision. Springer International Publishing, Munich, pp 596–613. https://doi.org/10.1007/978-3-030-01267-0_35

  19. Kim T, Ryu K, Song K, Yoon K -J (2020) Loop-net: joint unsupervised disparity and optical flow estimation of stereo videos with spatiotemporal loop consistency. IEEE Robot Autom Lett 5(4):5597–5604. https://doi.org/10.1109/LRA.2020.3009065

    Article  Google Scholar 

  20. Liang Z, Feng Y, Guo Y, Liu H, Chen W, Qiao L, Zhou L, Zhang J (2018) Learning for disparity estimation through feature constancy. In: IEEE conference on computer vision and pattern recognition. IEEE, Salt Lake City, pp 2811–2820. https://doi.org/10.1109/CVPR.2018.00297

  21. Liu S, Qi L, Qin H, Shi J, Jia J (2018) Path aggregation network for instance segmentation. In: IEEE conference on computer vision and pattern recognition. IEEE, Salt Lake City, pp 759–8768. https://doi.org/10.1109/CVPR.2018.00913

  22. Liang W, Xu P, Guo L, Bai H, Zhou Y, Chen F (2021) A survey of 3D object detection. Multimed Tools Appl 80(19):29617–29641. https://doi.org/10.1007/s11042-021-11137-y

    Article  Google Scholar 

  23. Lin T -Y, Dollár P, Girshick R B, He K, Hariharan B, Belongie S J (2017) Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition. IEEE, Honolulu, pp 936–944. https://doi.org/10.1109/CVPR.2017.106

  24. Liu Y, Ren J, Zhang J, Liu J, Lin M (2020) Visually imbalanced stereo matching. In: IEEE conference on computer vision and pattern recognition. IEEE, Seattle, pp 2026–2035. https://doi.org/10.1109/CVPR42600.2020.00210

  25. Mayer N, Ilg E, Hausser P, Fischer P, Cremers D, Dosovitskiy A, Brox T (2016) A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE conference on computer vision and pattern recognition. IEEE, Las Vegas, pp 4040–4048. https://doi.org/10.1109/CVPR.2016.438

  26. Menze M, Heipke C, Geiger A (2015) Joint 3D estimation of vehicles and scene flow. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences II-3/W5:427–434. https://doi.org/10.5194/isprsannals-II-3-W5-427-2015

    Google Scholar 

  27. Menze M, Heipke C, Geiger A (2018) Object scene flow. ISPRS J Photogramm Remote Sens 140:60–76. https://doi.org/10.1016/j.isprsjprs.2017.09.013

    Article  Google Scholar 

  28. Naga Srinivasu P, Balas V E (2021) Self-learning network-based segmentation for real-time brain M.R. images through HARIS. PeerJ Comput Sci 7:654. https://doi.org/10.7717/peerj-cs.654

    Article  Google Scholar 

  29. Newell A, Yang K, Deng J (2016) Stacked hourglass networks for human pose estimation. In: European conference on computer vision. Springer International Publishing, Amsterdam, pp 483–499. https://doi.org/10.1007/978-3-319-46484-8_29

  30. Nie G -Y, Cheng M -M, Liu Y, Liang Z, Fan D -P, Liu Y, Wang Y (2019) Multi-level context ultra-aggregation for stereo matching. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 3278–3286. https://doi.org/10.1109/CVPR.2019.00340

  31. Pang Y, Nie J, Xie J, Han J, Li X (2020) Bidnet: binocular image dehazing without explicit disparity estimation. In: IEEE Conference on computer vision and pattern recognition. IEEE, Seattle, pp 5930–5939. https://doi.org/10.1109/CVPR42600.2020.00597

  32. Pang Y, Cao J, Li Y, Xie J, Sun H, Gong J (2021) TJU-DHD: a diverse high-resolution dataset for object detection. IEEE Trans Image Process 30:207–219. https://doi.org/10.1109/TIP.2020.3034487

    Article  Google Scholar 

  33. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, de-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems 32. Curran Associates, Inc., Vancouver, pp 8024–8035

  34. Rahman M M, Islam M S, Sassi R, Aktaruzzaman Md (2019) Convolutional neural networks performance comparison for handwritten Bengali numerals recognition. SN Appl Sci 1(12):1660. https://doi.org/10.1007/s42452-019-1682-y

    Article  Google Scholar 

  35. Rhemann C, Hosni A, Bleyer M, Rother C, Gelautz M (2011) Fast cost-volume filtering for visual correspondence and beyond. In: IEEE conference on computer vision and pattern recognition. IEEE, Colorado Springs, pp 3017–3024. https://doi.org/10.1109/CVPR.2011.5995372

  36. Su K, Yan W, Wei X, Gu M (2021) Stereo voVNet-CNN for 3D object detection multimedia tools and applications. https://doi.org/10.1007/s11042-021-11506-7

  37. Sun H, Cao J, Pang Y (2023) Semantic-aware self-supervised depth estimation for stereo 3D detection. Pattern Recogn Lett 167:164–170. https://doi.org/10.1016/j.patrec.2023.02.006

    Article  Google Scholar 

  38. Tan M, Pang R, Le Q V (2020) Efficientdet: scalable and efficient object detection. In: IEEE conference on computer vision and pattern recognition. IEEE, Seattle, pp 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079

  39. Tankovich V, Hane C, Zhang Y, Kowdle A, Fanello S, Bouaziz S (2021) HITNEt: hierarchical iterative tile refinement network for real-time stereo matching. In: IEEE conference on computer vision and pattern recognition. IEEE, Nashville, pp 14357–14367. https://doi.org/10.1109/CVPR46437.2021.01413

  40. Tonioni A, Tosi F, Poggi M, Mattoccia S, Stefano L D (2019) Real-time self-adaptive deep stereo. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 195–204. https://doi.org/10.1109/CVPR.2019.00028

  41. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Conference on neural information processing systems, vol 30. Curran Associates, Inc., Long Beach, pp 6000–6010

  42. Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: IEEE conference on computer vision and pattern recognition. IEEE, Salt Lake City, pp 7794–7803. https://doi.org/10.1109/CVPR.2018.00813

  43. Wang L, Wang Y, Liang Z, Lin Z, Yang J, An W, Guo Y (2019) Learning parallax attention for stereo image super-resolution. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 12242–12251. https://doi.org/10.1109/CVPR.2019.01253

  44. Wang X, Zhang S, Yu Z, Feng L, Zhang W (2020) Scale-equalizing pyramid convolution for object detection. In: IEEE conference on computer vision and pattern recognition. IEEE, Seattle, pp 13356–13365. https://doi.org/10.1109/CVPR42600.2020.01337

  45. Wu Z, Wu X, Zhang X, Wang S, Ju L (2019) Semantic stereo matching with pyramid cost volumes. In: IEEE international conference on computer vision. IEEE, Seoul, pp 7483–7492. https://doi.org/10.1109/ICCV.2019.00758

  46. Wu J, Cong R, Fang L, Guo C, Zhang B, Ghamisi P (2023) Unpaired remote sensing image super-resolution with content-preserving weak supervision neural network. Sci China Inf Sci 66(1):119105. https://doi.org/10.1007/s11432-021-3575-1

    Article  Google Scholar 

  47. Xu H, Zhang J (2020) AANEt: adaptive aggregation network for efficient stereo matching. In: IEEE conference on computer vision and pattern recognition. IEEE, Seattle, pp 1959–1968. https://doi.org/10.1109/CVPR42600.2020.00203

  48. Yang M, Wu F, Li W (2020) Waveletstereo: learning wavelet coefficients of disparity map in stereo matching. In: IEEE conference on computer vision and pattern recognition. IEEE, Seattle, pp 12885–12894. https://doi.org/10.1109/CVPR42600.2020.01290

  49. Yi H, Wei Z, Ding M, Zhang R, Chen Y, Wang G, Tai Y -W (2020) Pyramid multi-view stereo net with self-adaptive view aggregation. In: European conference on computer vision. Online. Springer International Publishing, pp 766–782. https://doi.org/10.1007/978-3-030-58545-7_44

  50. Yin Z, Darrell T, Yu F (2019) Hierarchical discrete distribution decomposition for match density estimation. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 6037–6046. https://doi.org/10.1109/CVPR.2019.00620

  51. žbontar J, LeCun Y (2016) Stereo matching by training a convolutional neural network to compare image patches. J Mach Learn Res 17(1):2287–2318

    Google Scholar 

  52. Zhang F, Prisacariu V, Yang R, Torr P H S (2019) GA-Net: guided aggregation net for end-to-end stereo matching. In: IEEE conference on computer vision and pattern recognition. IEEE, Long Beach, pp 185–194. https://doi.org/10.1109/CVPR.2019.00027

  53. Zhang F, Qi X, Yang R, Prisacariu V, Wah B, Torr P (2020) Domain-invariant stereo matching networks. In: European conference on computer vision, vol 12347. Online. Springer International Publishing, pp 420–439. https://doi.org/10.1007/978-3-030-58536-5_25

Download references

Acknowledgments

This work was partially supported by the National Key R&D Program of China [2022ZD0160400], the National Key R&D Program of China [2018AAA0102800], and Tianjin Science and Technology Program [19ZXZNGX00050].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Pang.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Han, J., Pang, Y. et al. Supervised biadjacency networks for stereo matching. Multimed Tools Appl 83, 10247–10272 (2024). https://doi.org/10.1007/s11042-023-15362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15362-5

Keywords

Navigation