Skip to main content
Log in

Quadratic surface center-based possibilistic fuzzy clustering with kernel metric and local information for image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Kernel fuzzy weighted local information c-means (KWFLICM) algorithm has good segmentation effect in segmenting noisy images, but it can not effectively segment images with low contrast or high noise. The improved algorithm of KWFLICM is a kernel possibilistic fuzzy c-means clustering with local information (KWPFLICM), which has better anti-noise performance. However, this algorithm loses more details of original image when segmenting the image. In this paper, a kernel-based possibilistic fuzzy local information clustering algorithm based on quadratic polynomial is proposed to overcome the shortcomings of KWPFLICM algorithm. At the same time, the local membership information of neighborhood pixels is introduced as the penalty factor to update the local information, so as to further improve the robustness of the algorithm. By optimizing the objective function of modified possibilistic fuzzy local information clustering with quadratic surface centers, the formulas of fuzzy membership, possibilistic typicality, and the coefficients of quadratic polynomial center are derived theoretically, and the convergence of the proposed algorithm is strictly proved by Zangwill theorem and bordered Hessian matrix. Experimental results show that compared with existing state-of-the-art fuzzy clustering-related algorithms, the proposed algorithm has better segmentation performance and stronger anti-noise robustness, and can effectively suppress noise and retain details. It will have far-reaching significance for the development of robust fuzzy clustering segmentation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abhishek S, Anil K, Priyadarshi U (2021) A novel approach to incorporate local information in possibilistic c-Means algorithm for an optical remote sensing imagery. Egypt J Remote Sens Space Sci 24(1):151–161. https://doi.org/10.1016/j.ejrs.2020.06.001

    Article  Google Scholar 

  2. Abua MS, Aika LE, Arbin N (2015) A theorem for improving kernel based fuzzy c-means clustering algorithm convergence. AIP Conf Proc 1660:050044. https://doi.org/10.1063/1.4915677

    Article  Google Scholar 

  3. Bennai MT, Guessoum Z, Mazouzi S, Cormier S, Mezghiche M, Mezghiche M (2020) A stochastic multi-agent approach for medical-image segmentation: Application to tumor segmentation in brain MR images. Artif Intell Med 110:101980. https://doi.org/10.1016/j.artmed.2020.101980

    Article  Google Scholar 

  4. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c -means clustering algorithm. Comput Geosci 10(2–3):191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  5. Chang-Chien SJ, Nataliani Y, Yang MS (2021) Gaussian-kernel c-means clustering algorithms. Soft Comput 25:1699–1716. https://doi.org/10.1007/s00500-020-04924-6

    Article  Google Scholar 

  6. Chen GP, Dai Y, Zhang JX, Yin XT, Cui L (2022) MBDSNet: automatic segmentation of kidney ultrasound images using a multi-branch and deep supervision network. Digital Signal Process 130:103742. https://doi.org/10.1016/j.dsp.2022.103742

    Article  Google Scholar 

  7. Chen L, Zhao YP, Zhang CB (2022) Efficient kernel fuzzy clustering via random Fourier superpixel and graph prior for color image segmentation. Eng Appl Artif Intell 116:105335. https://doi.org/10.1016/j.engappai.2022.105335

    Article  Google Scholar 

  8. Dhar S, Kundu MK (2021) Accurate multi-class image segmentation using weak continuity constraints and neutrosophic set. Appl Soft Comput 112:107759. https://doi.org/10.1016/j.asoc.2021.107759

    Article  Google Scholar 

  9. Dunn CJ (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3(3):32–57. https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  Google Scholar 

  10. Eelbode T, Bertels J, Berman M, Belgium L, Vandermeulen D, Maes F, Bisschops R, Blaschko MB (2020) Optimization for medical image segmentation: Theory and practice when evaluating with Dice score or Jaccard index. IEEE Trans Med Imaging 39(11):3679–3690. https://doi.org/10.1109/TMI.2020.3002417

    Article  Google Scholar 

  11. Gong M, Liang Y, Shi J, Ma W, Ma J (2013) Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Trans Image Process 22(2):573–584. https://doi.org/10.1109/TIP.2012.2219547

    Article  MathSciNet  Google Scholar 

  12. Gong M, Zhao J, Liu J, Miao Q, Jiao L (2016) Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans Neural Netw Learn Syst 27(1):125–138. https://doi.org/10.1109/TNNLS.2015.2435783

    Article  MathSciNet  Google Scholar 

  13. Güven SA, Talu MF (2023) Brain MRI high resolution image creation and segmentation with the new GAN method. Biomed Signal Process Control 80(Part 1):104246. https://doi.org/10.1016/j.bspc.2022.104246

    Article  Google Scholar 

  14. Jha P, Tiwari A, Bharill N, Ratnaparkhe M, Mounika M, Nagendra N (2021) Apache spark based kernelized fuzzy clustering framework for single nucleotide polymorphism sequence analysis. Comput Biol Chem 92:107475. https://doi.org/10.1016/j.compbiolchem.2021.107454

    Article  Google Scholar 

  15. Jin D, Bai X, Wang Y (2021) Integrating structural symmetry and local homoplasy information in intuitionistic fuzzy clustering for infrared pedestrian segmentation. IEEE Trans Syst Man Cybern: Syst 51(7):4365–4378. https://doi.org/10.1109/TSMC.2019.2931699

    Article  Google Scholar 

  16. Krinidis S, Chatzis V (2010) A robust fuzzy local information C-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337. https://doi.org/10.1109/TIP.2010.2040763

    Article  MathSciNet  Google Scholar 

  17. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110. https://doi.org/10.1109/91.227387

    Article  Google Scholar 

  18. Liu B, He S, He D, Zhang Y, Guizani M (2019) A spark-based parallel fuzzy c-means segmentation algorithm for agricultural image big data. IEEE Access 7:42169–42180. https://doi.org/10.1109/ACCESS.2019.2907573

    Article  Google Scholar 

  19. Memon KH, Memon S, Qureshi MA, Muhammad BA, Dileep K, Rehan AS (2019) Kernel possibilistic fuzzy C-means clustering with local information for image segmentation. Int J Fuzzy Syst 21(1):321–332. https://doi.org/10.1007/s40815-018-0537-9

    Article  Google Scholar 

  20. Montero D, Aginako N, Sierra B, Nieto M (2022) Efficient large-scale face clustering using an online mixture of Gaussians. Eng Appl Artif Intell 114:105079. https://doi.org/10.1016/j.engappai.2022.105079

    Article  Google Scholar 

  21. Ogohara K, Gichu R (2022) Automated segmentation of textured dust storms on mars remote sensing images using an encoder-decoder type convolutional neural network. Comput Geosci 160:105043. https://doi.org/10.1016/j.cageo.2022.105043

    Article  Google Scholar 

  22. Oskouei AG, Hashemzadeh M, Asheghi B, AliBalafar M (2021) CGFFCM: cluster-weight and group-local feature-weight learning in fuzzy C-means clustering algorithm for color image segmentation. Appl Soft Comput 113(Part B):108005. https://doi.org/10.1016/j.asoc.2021.108005

    Article  Google Scholar 

  23. Pal NR, Pal K, Bezdek JC (Jul. 1997) A mixed c-means clustering model, Proceedings of 6th International Fuzzy Systems Conference, https://doi.org/10.1109/FUZZY.1997.616338

  24. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy C-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530. https://doi.org/10.1109/TFUZZ.2004.840099

    Article  Google Scholar 

  25. Pham NV, Pham LT, Pedrycz W, Ngo LT (2021) Feature-reduction fuzzy co-clustering approach for hyper-spectral image analysis. Knowl-Based Syst 216:106549. https://doi.org/10.1016/j.knosys.2020.106549

    Article  Google Scholar 

  26. Saha A, Das S (2019) Stronger convergence results for the center-based fuzzy clustering with convex divergence measure. IEEE Trans Cybern 49(12):4229–4242. https://doi.org/10.1109/TCYB.2018.2861211

    Article  Google Scholar 

  27. Shu X, Yang Y, Wu B (2021) A neighbor level set framework minimized with the split Bregman method for medical image segmentation. Signal Process 189:108293. https://doi.org/10.1016/j.sigpro.2021.108293

    Article  Google Scholar 

  28. Szilágyi L (2011) Fuzzy-possibilistic product partition: a novel robust approach to C-means clustering, International Conference on Modeling Decisions for Artificial Intelligence, pp.150–161, https://doi.org/10.1007/978-3-642-22589-5_15

  29. Szilagyi L, Laszlo L, Iclanzan D (2020) A review on suppressed fuzzy c-means clustering models. Acta Univ Sapientiae, Inform 12(2):302–324. https://doi.org/10.2478/ausi-2020-0018

    Article  Google Scholar 

  30. Tan X, Xiao Z, Wan Q, Shao W (2021) Scale sensitive neural network for road segmentation in high-resolution remote sensing images. IEEE Geosci Remote Sens Lett 18(3):533–537. https://doi.org/10.1109/LGRS.2020.2976551

    Article  Google Scholar 

  31. Ullmann T, Hennig C, Boulesteix AL (2022) Validation of cluster analysis results on validation data: A systematic framework. WIREs Data Min Knowl Discov 12(3):e1444. https://doi.org/10.1002/widm.1444 ULLMANNET AL.19 of 19

    Article  Google Scholar 

  32. Umirzakova S, Whangbo TK (2022) Detailed feature extraction network-based fine-grained face segmentation. Knowl-Based Syst 250:109036. https://doi.org/10.1016/j.knosys.2022.109036

    Article  Google Scholar 

  33. Wang HY, Wang JS, Wang G (2022) A survey of fuzzy clustering validity evaluation methods. Inf Sci 618:270–297. https://doi.org/10.1016/j.ins.2022.11.010

    Article  Google Scholar 

  34. Weng G, Dong B (2021) A new active contour model driven by pre-fitting bias field estimation and clustering technique for image segmentation. Eng Appl Artif Intell 104:104299. https://doi.org/10.1016/j.engappai.2021.104299

    Article  Google Scholar 

  35. Wu X (Jun. 2006) A possibilistic C-means clustering algorithm based on kernel methods, 2006 International Conference on Communications, Circuits and Systems, https://doi.org/10.1109/ICCCAS.2006.285084

  36. Wu WL, Keller JM (Jul. 2020) Sequential possibilistic local information one-means clustering for image segmentation, 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), https://doi.org/10.1109/FUZZ48607.2020.9177576

  37. Wu C, Liu N (2021) Suppressed robust picture fuzzy clustering for image segmentation. Soft Comput 25:3751–3774. https://doi.org/10.1007/s00500-020-05403-8

    Article  Google Scholar 

  38. Wu CM, Peng SY (2023) Robust interval type-2 kernel-based possibilistic fuzzy clustering algorithm incorporating local and non-local information. Adv Eng Softw 176:103377. https://doi.org/10.1016/j.advengsoft.2022.103377

    Article  Google Scholar 

  39. Wu CM, Wang ZR (2021) A robust kernel-based fuzzy local neighborhood clustering with quadratic polynomial-center clusters. Digital Signal Process 118:103200. https://doi.org/10.1016/j.dsp.2021.103200

    Article  Google Scholar 

  40. Wu CM, Wang ZR (2022) A modified fuzzy dual-local information c-mean clustering algorithm using quadratic surface as prototype for image segmentation. Expert Syst Appl 201:117019. https://doi.org/10.1016/j.eswa.2022.117019

    Article  Google Scholar 

  41. Wu CM, Zhang X (2022) Total Bregman divergence-driven possibilistic fuzzy clustering with kernel metric and local information for grayscale image segmentation. Pattern Recogn 128:108686. https://doi.org/10.1016/j.patcog.2022.108686

    Article  Google Scholar 

  42. Wu CM, Zhang JJ (2022) Robust semi-supervised spatial picture fuzzy clustering with local membership and KL-divergence for image segmentation. Int J Mach Learn Cybern 13:963–987. https://doi.org/10.1007/s13042-021-01429-y

    Article  Google Scholar 

  43. Wu Z, Xie W, Yu J (Sep. 2003) Fuzzy C-means clustering algorithm based on kernel method, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications, pp. 27–30, https://doi.org/10.1109/ICCIMA.2003.1238099

  44. Xie Y, Zhu J, Cao Y, Feng D, Hu M, Li W, Zhang Y, Fu L (2020) Refined extraction of building outlines from high-resolution remote sensing imagery based on a multifeature convolutional neural network and morphological filtering. IEEE J Sel Top Appl Earth Obs Remote Sens 13:1842–1855. https://doi.org/10.1109/JSTARS.2020.2991391

    Article  Google Scholar 

  45. Yadav NK, Saraswat M (2022) A novel fuzzy clustering based method for image segmentation in RGB-D images. Eng Appl Artif Intell 111:104709. https://doi.org/10.1016/j.engappai.2022.104709

    Article  Google Scholar 

  46. Yang MS (1993) Convergence properties of the generalized fuzzy c-means clustering algorithms. Comput Math Appl 25(12):3–11. https://doi.org/10.1016/0898-1221(93)90181-T

    Article  MathSciNet  Google Scholar 

  47. Yang MS, Tian YC (2015) Bias-correction fuzzy clustering algorithms. Inf Sci 309:138–162. https://doi.org/10.1016/j.ins.2015.03.006

    Article  Google Scholar 

  48. Zangwill WI (1969) Nonlinear programming: A unified approach. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  49. Zare A, Young N, Suen D, Nabelek T, Galusha A, Kelleret J (Dec. 2017) Possibilistic fuzzy local information C-means for sonar image segmentation, IEEE Symposium Series on Computational Intelligence (SSCI) Proceedings, https://doi.org/10.1109/SSCI.2017.8285358

  50. Zhang X, Pan W, Wu Z, Chen J, Mao Y, Wu R (2020) Robust image segmentation using fuzzy C-means clustering with spatial information based on total generalized variation. IEEE Access 8:95681–95697. https://doi.org/10.1109/ACCESS.2020.2995660

    Article  Google Scholar 

  51. Zhang J, Xie Y, Wang Y, Xia Y (2021) Inter-slice context residual learning for 3D medical image segmentation. IEEE Trans Med Imaging 40(2):661–672. https://doi.org/10.1109/TMI.2020.3034995

    Article  Google Scholar 

  52. Zhang X, Ning Y, Li X, Zhang C (2021) Anti-noise FCM image segmentation method based on quadratic polynomial. Signal Process 178:107767. https://doi.org/10.1016/j.sigpro.2020.107767

    Article  Google Scholar 

  53. Zhang XF, Wang H, Zhang Y, Gao X, Wang G, Zhang CM (2021) Improved fuzzy clustering for image segmentation based on a low-rank prior. Comput Vis Media 7:513–528. https://doi.org/10.1007/s41095-021-0239-3

    Article  Google Scholar 

  54. Zhao F, Jiao LC, Liu HQ (2013) Kernel generalized fuzzy c-means clustering with spatial information for image segmentation. Digital Signal Process 23(1):184–199. https://doi.org/10.1016/j.dsp.2012.09.016

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 61671377), and the Natural Science Foundation of Shaanxi Province (2022JM-370). Wu and Liu would like to thank the anonymous reviewers for their constructive suggestions to improve the overall quality of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Chengmao Wu: Conceptualization, Methodology, Visualization, Investigation. Zeren Wang: Data curation, Writing – original draft, Software, Validation, Writing – review & editing.

Corresponding author

Correspondence to Zeren Wang.

Ethics declarations

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Conflict of interest

The authors have declared that there are no conflict of interest. Non-financial competing of interests.

Human or animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Wang, Z. Quadratic surface center-based possibilistic fuzzy clustering with kernel metric and local information for image segmentation. Multimed Tools Appl 83, 44147–44191 (2024). https://doi.org/10.1007/s11042-023-15267-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15267-3

Keywords

Navigation