Skip to main content
Log in

Bee detection in bee hives using selective features from acoustic data

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Honeybees, a key pollinator of the world’s most cultivated crops, are experiencing colony collapses due to a variety of factors. The existence of honeybees and queens is critical to the sociality of a colony, and the presence of bees in agricultural settings is vital to the ecological balance. Moreover, beehives without a queen may lead to the decline of an entire colony therefore finding them through effective and an accurate approach is a critical task. In this scenario, we analyzed acoustic/sound data of various classes (i.e. Bee, NoBee, and NoQueen) from beehive colonies. This study examines five distinct features including spectral centroid, zero-crossing rate, Mel-frequency cepstral coefficients (MFCC), chromagram, and constant Q-transform characteristics for their suitability in detecting bees using the acoustic data. In addition, selective features using principal component analysis (PCA), Chi-square analysis (Chi2), and singular value decomposition (SVD) are used. Moreover, the study proposes hybrid features where selective PCA, Chi2, and SVD characteristics are integrated to create a suitable feature set. Experimental results exhibit the suitability of the hybrid feature set which outperformed individual features for “Bee”, “NoBee” and “NoQueen” classes prediction. Cross-validation and T-test results also confirm the superior performance of hybrid MFCC features. The results indicate that RF and KNN show better performance than other machine learning models with maximum accuracy scores of 0.82 and 0.83, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The used dataset is publicly available on Kaggle. https://www.kaggle.com/yevheniiklymenko/beehive-buzz-anomalies

References

  1. Abrol DP (2012) Pollination biology: biodiversity conservation and agricultural production. Springer

  2. Andreev N (2017) Lactic acid fermentation of human excreta for agricultural application. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Anwar O, Keating A, Cardell-Oliver R, Datta A, Putrino G (2022) Design and development of low-power, long-range data acquisition system for beehives-beedas. Comput Electron Agric 201:107281

    Article  Google Scholar 

  4. Bachu R, Kopparthi S, Adapa B, Barkana B (2008) Separation of voiced and unvoiced using zero crossing rate and energy of the speech signal. In: American Society for Engineering Education (ASEE) zone conference proceedings. American Society for Engineering Education, pp 1–7

  5. Beehive buzz anomalies dataset https://www.kaggle.com/yevheniiklymenko/beehive-buzz-anomalies. Accessed 20 Feb 2022

  6. Birajdar GK, Patil MD (2020) Speech/music classification using visual and spectral chromagram features. J Ambient Intell Humaniz Comput 11 (1):329–347

    Article  Google Scholar 

  7. Bortolotti L, Costa C (2014) Chemical communication in the honey bee society, Neurobiology of chemical communication

  8. Braga AR, Gomes DG, Rogers R, Hassler EE, Freitas BM, Cazier JA (2020) A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Comput Electron Agric 169:105161

    Article  Google Scholar 

  9. Calderone NW (2012) Insect pollinated crops, insect pollinators and us agriculture: trend analysis of aggregate data for the period 1992–2009. PloS one 7 (5):e37235

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cecchi S, Spinsante S, Terenzi A, Orcioni S (2020) A smart sensor-based measurement system for advanced bee hive monitoring. Sensors 20(9):2726

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cejrowski T, Szymański J, Mora H, Gil D (2018) Detection of the bee queen presence using sound analysis. In: Asian conference on intelligent information and database systems. Springer, pp 297–306

  12. Chakroborty S, Roy A, Saha G (2006) Fusion of a complementary feature set with mfcc for improved closed set text-independent speaker identification. In: 2006 IEEE International conference on industrial technology. IEEE, pp 387–390

  13. Chi-square test for feature selection in machine learning (2022) https://towardsdatascience.com/chi-square-test-for-feature-selection-in-machine-learning-206b1f0b8223. Accessed 20 Feb 2022

  14. Debauche O, El Moulat M, Mahmoudi S, Boukraa S, Manneback P, Lebeau F (2018) Web monitoring of bee health for researchers and beekeepers based on the internet of things. Procedia Comput Sci 130:991–998

    Article  Google Scholar 

  15. Ellis DP (2007) Classifying music audio with timbral and chroma features

  16. Epa (2020) Pesticide issues in the works: Honey bee colony collapse disorder. (environmental protection agency). http://www.epa.gov/pesticides/about/intheworks/honeybee.hlm. Accessed 20 Feb 2022

  17. Eskov E, Toboev V (2011) Changes in the structure of sounds generated by bee colonies during sociotomy. Entomol Rev 91(3):347–353

    Article  Google Scholar 

  18. Fallucchi F, Zanzotto FM (2009) Svd feature selection for probabilistic taxonomy learning. In: Proceedings of the workshop on geometrical models of natural language semantics, pp 66–73

  19. Ferrari S, Silva M, Guarino M, Berckmans D (2008) Monitoring of swarming sounds in bee hives for early detection of the swarming period. Comput Electron Agricul 64(1):72–77

    Article  Google Scholar 

  20. Flores JM, Gil-Lebrero S, Gámiz V, Rodríguez MI, Ortiz MA, Quiles FJ (2019) Effect of the climate change on honey bee colonies in a temperate mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Sci Total Environ 653:1111–1119

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Frings H, Little F (1957) Reactions of honey bees in the hive to simple sounds. Science 125(3238):122–122

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Giannakopoulos T, Pikrakis A (2014) Chapter 4 - audio features. In: Giannakopoulos T, Pikrakis A (eds) Introduction to audio analysis. Academic Press, Oxford, pp 59–103. https://www.sciencedirect.com/science/article/pii/B9780080993881000042

  23. Gouyon F, Pachet F, Delerue O et al (2000) On the use of zero-crossing rate for an application of classification of percussive sounds. In: Inproceedings of the COST G-6 conference on Digital Audio Effects (DAFX-00), Verona, Italy, vol 5, p 16. Citeseer

  24. Hasan MR, Jamil M, Rahman M, et al. (2004) Speaker identification using mel frequency cepstral coefficients. Variations 1(4):565–568

    Google Scholar 

  25. Henry M, Beguin M, Requier F, Rollin O, Odoux J. -F., Aupinel P, Aptel J, Tchamitchian S, Decourtye A (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336(6079):348–350

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hossan MA, Memon S, Gregory MA (2010) A novel approach for mfcc feature extraction. In: 2010 4th International conference on signal processing and communication systems. IEEE, pp 1–5

  27. Howard D, Duran O, Hunter G, Stebel K (2013) Signal processing the acoustics of honeybees (apis mellifera) to identify the queenless state in hives. Proc Instit Acoust 35(1):290–297

    Google Scholar 

  28. Hung K-L J, Kingston JM, Albrecht M, Holway DA, Kohn JR (2018) The worldwide importance of honey bees as pollinators in natural habitats. Proc R Soc B: Biol Sci 285(1870):20172140

    Article  Google Scholar 

  29. Jafor Sadeek Quaderi S, Afrin Labonno S, Mostafa S, Akhter S (2022) Identify the beehive sound using deep learning, arXiv e-prints, pp arXiv–2209

  30. Liu H, Setiono R (1995) Chi2: feature selection and discretization of numeric attributes. In: Proceedings of 7th IEEE international conference on tools with artificial intelligence. IEEE, pp 388–391

  31. Malhi A, Gao RX (2004) Pca-based feature selection scheme for machine defect classification. IEEE Trans Instrum Measur 53(6):1517–1525

    Article  ADS  Google Scholar 

  32. Mezquida DA, Martínez JL (2009) Platform for bee-hives monitoring based on sound analysis. a perpetual warehouse for swarm’s daily activity. Span J Agric Res 7(4):824–828

    Article  Google Scholar 

  33. Michelsen A, Kirchner WH, Lindauer M (1986) Sound and vibrational signals in the dance language of the honeybee, apis mellifera. Behav Ecol Sociobiol 18(3):207–212

    Article  Google Scholar 

  34. Muda L, Begam M, Elamvazuthi I (2010) Voice recognition algorithms using mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw) techniques, arXiv:1003.4083

  35. Nolasco I, Benetos E (2018) To bee or not to bee: investigating machine learning approaches for beehive sound recognition, arXiv:1811.06016

  36. Ntalampiras S, Potamitis I, Fakotakis N (2012) Acoustic detection of human activities in natural environments. J Audio Eng Soc 60(9):686–695

    Google Scholar 

  37. Omar B, Rustam F, Mehmood A, Choi GS, et al. (2021) Minimizing the overlapping degree to improve class-imbalanced learning under sparse feature selection: application to fraud detection. IEEE Access 9:28101–28110

    Article  Google Scholar 

  38. Qandour A, Ahmad I, Habibi D, Leppard M (2014), Remote beehive monitoring using acoustic signals

  39. Rigatti SJ (2017) Random forest. J Insur Med 47(1):31–39

    Article  PubMed  Google Scholar 

  40. Robles-Guerrero A, Saucedo-Anaya T, González-Ramérez E, Galván-Tejada CE (2017) Frequency analysis of honey bee buzz for automatic recognition of health status: a preliminary study. Res Comput Sci 142:89–98

    Article  Google Scholar 

  41. Rustam F, Ashraf I, Mehmood A, Ullah S, Choi GS (2019) Tweets classification on the base of sentiments for us airline companies. Entropy 21(11):1078

    Article  ADS  PubMed Central  Google Scholar 

  42. Rustam F, Ishaq A, Munir K, Almutairi M, Aslam N, Ashraf I (2022) Incorporating cnn features for optimizing performance of ensemble classifier for cardiovascular disease prediction. Diagnostics 12(6):1474

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ruvinga S, Hunter G, Duran O, Nebel J-C (2021) Use of lstm networks to identify a queenlessness in honeybee hives from audio signals. In: 2021 17th International Conference on Intelligent Environments (IE). IEEE, pp 1–4

  44. Schörkhuber C, Klapuri A, Sontacchi A (2013) Audio pitch shifting using the constant-q transform. J Aud Eng Soc 61(7/8):562–572

    Google Scholar 

  45. Shafique R, Siddiqui H-U-R, Rustam F, Ullah S, Siddique MA, Lee E, Ashraf I, Dudley S et al (2021) A novel approach to railway track faults detection using acoustic analysis. Sensors 21(18):6221

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Sharif MZ, Wario F, Di N, Xue R, Liu F (2020) Soundscape indices: new features for classifying beehive audio samples. Sociobiology 67(4):566–571

    Article  Google Scholar 

  47. Sharif MZ, Di N, Liu F (2021) Monitoring honeybees (apis spp.)(hymenoptera: Apidae) in climate-smart agriculture: a review. Appl Entomol Zool, 1–15

  48. Sperandei S (2014) Understanding logistic regression analysis. Biochemia Medica 24 (1):12–18

    Article  PubMed  PubMed Central  Google Scholar 

  49. Srinivasu PN, Balas VE (2021) Self-learning network-based segmentation for real-time brain mr images through haris. PeerJ Comput Sci 7:e654

    Article  Google Scholar 

  50. Suthaharan S (2016) Support vector machine. In: Machine learning models and algorithms for big data classification. Springer, pp 207–235

  51. Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9:11

    Google Scholar 

  52. Voudiotis G, Moraiti A, Kontogiannis S (2022) Deep learning beehive monitoring system for early detection of the varroa mite. Signals 3(3):506–523

    Article  Google Scholar 

  53. Vulli A, Srinivasu PN, Sashank MSK, Shafi J, Choi J, Ijaz MF (2022) Fine-tuned densenet-169 for breast cancer metastasis prediction using fastai and 1-cycle policy. Sensors 22(8):2988

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Wun S, Horner A, Wu B (2014) Effect of spectral centroid manipulation on discrimination and identification of instrument timbres. J Audio Eng Soc 62(9):575–583

    Article  Google Scholar 

  55. Yang J, Das RK (2019) Low frequency frame-wise normalization over constant-q transform for playback speech detection. Digital Signal Process 89:30–39

    Article  MathSciNet  Google Scholar 

  56. Yigit H (2013) A weighting approach for knn classifier. In: 2013 international conference on electronics, computer and computation (ICECCO). IEEE, pp 228–231

  57. Zgank A (2020) Bee swarm activity acoustic classification for an iot-based farm service. Sensors 20(1):21

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Ashraf.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Furqan Rustam and Muhammad Zahid Sharif contributed equally in this research.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rustam, F., Sharif, M.Z., Aljedaani, W. et al. Bee detection in bee hives using selective features from acoustic data. Multimed Tools Appl 83, 23269–23296 (2024). https://doi.org/10.1007/s11042-023-15192-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15192-5

Keywords

Navigation