Skip to main content
Log in

Asymmetric Cryptosystem Based on Biological Mutation Operation in Chirp-Z Domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we have proposed an asymmetric image encryption algorithm in the Chirp-Z domain using chaotic Tinkerbell map, DNA coding with biological mutation and phase truncation and phase reservation (PTFT) operation. Most of the DNA based encryption schemes involve XOR operator. The proposed asymmetric scheme uses biological mutation operator having more security features. The proposed cryptosystem is tested with various grayscale images and simulation results for Boy, Vegetable, and DICOM images are demonstrated in this paper. The proposed encryption algorithm is highly sensitive to the encryption parameters whereas DNA coding and PTFT provided an additional layer of security. The simulation result validates robustness of proposed image encryption algorithm against statistical attack, noise attack, chosen plaintext attack, special iterative attack for asymmetric schemes, and bruteforce attacks. The performance of proposed scheme is also compared with similar existing encryption algorithms. The results demonstrate that the proposed encryption algorithm can resist the existing cryptographic attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Agoyi M, Çelebi E, Anbarjafari G (2015) A watermarking algorithm based on chirp z-transform, discrete wavelet transform, and singular value decomposition. SIViP 9(3):735–745. https://doi.org/10.1007/s11760-014-0624-9

    Article  Google Scholar 

  2. Akkasaligar PT, Biradar S (2020) Selective medical image encryption using DNA cryptography. Information Security Journal: A Global Perspective 29(2):91–101. https://doi.org/10.1080/19393555.2020.1718248

    Article  Google Scholar 

  3. Archana, Sachin, and P. Singh, “Cryptosystem based on triple random phase encoding with chaotic Henon map,” in Proceedings of International Conference on Data Science and Applications, vol. 148, K. Ray, K. C. Roy, S. K. Toshniwal, H. Sharma, and A. Bandyopadhyay, Eds. Singapore: Springer Singapore, 2021, pp. 73–84. doi: https://doi.org/10.1007/978-981-15-7561-7_5.

  4. Archana, Sachin, and P. Singh. 2021.“Cascaded unequal modulus decomposition in Fresnel domain based cryptosystem to enhance the image security,” Optics and Lasers in Engineering, p. 12. https://doi.org/10.1016/j.optlaseng.2020.106399.

  5. Cai J, Shen X, Lei M, Lin C, Dou S (2015) Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt Lett 40(4):475. https://doi.org/10.1364/OL.40.000475

    Article  Google Scholar 

  6. Chen H, Zhu L, Liu Z, Tanougast C, Liu F, Blondel W (2020) Optical single-channel color image asymmetric cryptosystem based on hyperchaotic system and random modulus decomposition in Gyrator domains. Opt Lasers Eng 124:05809. https://doi.org/10.1016/j.optlaseng.2019.105809

    Article  Google Scholar 

  7. Chen J, Chen L, Zhou Y (2020) Cryptanalysis of a DNA-based image encryption scheme. Inf Sci 520:130–141. https://doi.org/10.1016/j.ins.2020.02.024

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen H, Liu Z, Tanougast C, Liu F, Blondel W (2021) A novel chaos based optical cryptosystem for multiple images using DNA-blend and gyrator transform. Opt Lasers Eng 138:106448. https://doi.org/10.1016/j.optlaseng.2020.106448

    Article  Google Scholar 

  9. Clelland CT, Risca V, Bancroft C (1999) Hiding messages in DNA microdots. Nature 399(6736):533–534. https://doi.org/10.1038/21092

    Article  Google Scholar 

  10. Deng X (2015) Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment. Opt Lett 40(16):3913. https://doi.org/10.1364/OL.40.003913

    Article  Google Scholar 

  11. Diaconu A-V (2016) Circular inter–intra pixels bit-level permutation and chaos-based image encryption. Inf Sci 355–356:314–327. https://doi.org/10.1016/j.ins.2015.10.027

    Article  Google Scholar 

  12. Dou Y,  Liu X, Fan H, and Li M. 2017. “Cryptanalysis of a DNA and chaos based image encryption algorithm,” Optik - International Journal for Light and Electron Optics, vol. 145. https://doi.org/10.1016/j.ijleo.2017.08.050.

  13. El-Khamy SE, Mohamed AG (2021) An efficient DNA-inspired image encryption algorithm based on hyper-chaotic maps and wavelet fusion. Multimed Tools Appl. https://doi.org/10.1007/s11042-021-10527-6

    Article  Google Scholar 

  14. Elshamy AM et al (2013) Optical image encryption based on chaotic Baker map and double random phase encoding. J Lightwave Technol 31(15):2533–2539. https://doi.org/10.1109/JLT.2013.2267891

    Article  Google Scholar 

  15. Hermassi H, Belazi A, Rhouma R, Belghith SM (2014) Security analysis of an image encryption algorithm based on a DNA addition combining with chaotic maps. Multimed Tools Appl 72(3):2211–2224. https://doi.org/10.1007/s11042-013-1533-6

    Article  MATH  Google Scholar 

  16. Jain A, Rajpal N (2016) A robust image encryption algorithm resistant to attacks using DNA and chaotic logistic maps. Multimed Tools Appl 75(10):5455–5472. https://doi.org/10.1007/s11042-015-2515-7

    Article  Google Scholar 

  17. Javidi B (1997) Fault tolerance properties of a double phase encoding encryption technique. Opt Eng 36(4):992. https://doi.org/10.1117/1.601144

    Article  Google Scholar 

  18. Javidi B, Nomura T (2000) Securing information by use of digital holography. Opt Lett 25(1):28. https://doi.org/10.1364/OL.25.000028

    Article  Google Scholar 

  19. Kishk S, Javidi B (2002) Information hiding technique with double phase encoding. Appl Opt 41(26):5462. https://doi.org/10.1364/AO.41.005462

    Article  Google Scholar 

  20. Krishna PR, Teja CVMS, R. D. S, and T. V, “A chaos based image encryption using Tinkerbell map functions,” in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). pp. 578–582. https://doi.org/10.1109/ICECA.2018.8474891.

  21. Kumar R, Quan C (2019) Optical colour image encryption using spiral phase transform and chaotic pixel scrambling. J Mod Opt 66(7):776–785. https://doi.org/10.1080/09500340.2019.1572807

    Article  MathSciNet  Google Scholar 

  22. Kumar R, Bhaduri B, Hennelly B (2018) QR code-based non-linear image encryption using Shearlet transform and spiral phase transform. J Mod Opt 65(3):321–330. https://doi.org/10.1080/09500340.2017.1395486

    Article  MathSciNet  Google Scholar 

  23. Kumar J, Singh P, Yadav AK, Kumar A (2018) Asymmetric cryptosystem for phase images in fractional Fourier domain using LU-decomposition and Arnold transform. Procedia Computer Sci 132:1570–1577. https://doi.org/10.1016/j.procs.2018.05.121

    Article  Google Scholar 

  24. Kumari E, Mukherjee S, Singh P, Kumar R (2020) Asymmetric color image encryption and compression based on discrete cosine transform in Fresnel domain. Results in Optics 1:100005. https://doi.org/10.1016/j.rio.2020.100005

    Article  Google Scholar 

  25. Kumari E, Singh P, Mukherjee S, Purohit GN (2020) Analysis of triple random phase encoding cryptosystem in Fresnel domain. Results in Optics 1:100009. https://doi.org/10.1016/j.rio.2020.100009

    Article  Google Scholar 

  26. Lai CS et al (2019) A robust correlation analysis framework for imbalanced and dichotomous data with uncertainty. Inf Sci 470:58–77. https://doi.org/10.1016/j.ins.2018.08.017

    Article  MATH  Google Scholar 

  27. Lyda R, Hamrock J (2007) Using entropy analysis to find encrypted and packed malware. IEEE Secur Privacy Mag 5(2):40–45. https://doi.org/10.1109/MSP.2007.48

    Article  Google Scholar 

  28. Mosso E, Bolognini N (2019) Dynamic multiple-image encryption based on chirp z-transform. J Opt 21(3):035704. https://doi.org/10.1088/2040-8986/ab015f

    Article  Google Scholar 

  29. Mosso E, Suárez O, Bolognini N (2019) Asymmetric multiple-image encryption system based on a chirp z-transform. Appl Opt 58(21):5674. https://doi.org/10.1364/AO.58.005674

    Article  Google Scholar 

  30. Peng X, Zhang P, Wei H, Yu B (2006) Known-plaintext attack on optical encryption based on double random phase keys. Opt Lett 31(8):1044. https://doi.org/10.1364/OL.31.001044

    Article  Google Scholar 

  31. Peng X, Wei H, Zhang P (2006) Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt Lett 31(22):3261. https://doi.org/10.1364/OL.31.003261

    Article  Google Scholar 

  32. Rabiner LR, Schafer RW, Rader CM (1969) The chirp z-transform algorithm and its application. Bell Syst Tech J 48(5):1249–1292. https://doi.org/10.1002/j.1538-7305.1969.tb04268.x

    Article  MathSciNet  Google Scholar 

  33. Rakheja P, Vig R, Singh P (2019) Optical asymmetric watermarking using 4D hyperchaotic system and modified equal modulus decomposition in hybrid multi resolution wavelet domain. Optik 176:425–437. https://doi.org/10.1016/j.ijleo.2018.09.088

    Article  Google Scholar 

  34. Rakheja P, Vig R, Singh P (2019) An asymmetric hybrid watermarking mechanism using hyperchaotic system and random decomposition in 2D Non-separable linear canonical domain. PINSA. https://doi.org/10.16943/ptinsa/2019/49590

    Article  Google Scholar 

  35. Rakheja P, Vig R, Singh P, Kumar R (2019) An iris biometric protection scheme using 4D hyperchaotic system and modified equal modulus decomposition in hybrid multi resolution wavelet domain. Opt Quant Electron 51(6):204. https://doi.org/10.1007/s11082-019-1921-x

    Article  Google Scholar 

  36. Refregier P, Javidi B (1995) Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett 20(7):767. https://doi.org/10.1364/OL.20.000767

    Article  Google Scholar 

  37. Sachin, Archana, and P. Singh. 2021. “Optical image encryption algorithm based on chaotic Tinkerbell map with random phase masks in Fourier domain,” in Proceedings of International Conference on Data Science and Applications, vol. 148, K. Ray, K. C. Roy, S. K. Toshniwal, H. Sharma, and A. Bandyopadhyay, Eds. Singapore: Springer Singapore, 2021, pp. 249–262. https://doi.org/10.1007/978-981-15-7561-7_20.

  38. Sharma N, Saini I, Yadav A, and Singh P. 2017. “Phase image encryption based on 3D-Lorenz chaotic system and double random phase encoding.” 3D Res. vol. 8, no. 4, p. 39, https://doi.org/10.1007/s13319-017-0149-4.

  39. Singh P, Yadav AK, Singh K (2017) Phase image encryption in the fractional Hartley domain using Arnold transform and singular value decomposition. Opt Lasers Eng 91:187–195. https://doi.org/10.1016/j.optlaseng.2016.11.022

    Article  Google Scholar 

  40. Singh P, Yadav AK,  Singh K, and Saini I. 2017. “Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition,” presented at the AIP conference proceeding, 2017, p. 020017. https://doi.org/10.1063/1.4973267.

  41. Singh P, Yadav AK, and Singh K. 2019 “Known-plaintext attack on cryptosystem based on fractional hartley transform using particle swarm optimization algorithm,” in Engineering Vibration, Communication and Information Processing, vol. 478, K. Ray, S. N. Sharan, S. Rawat, S. K. Jain, S. Srivastava, and A. Bandyopadhyay, Eds. Singapore: Springer Singapore, 2019, pp. 317–327. https://doi.org/10.1007/978-981-13-1642-5_29.

  42. Su X, Li W, Hu H (2017) Cryptanalysis of a chaos-based image encryption scheme combining DNA coding and entropy. Multimed Tools Appl 76(12):14021–14033. https://doi.org/10.1007/s11042-016-3800-9

    Article  Google Scholar 

  43. Sukhoy V, Stoytchev A (2019) Generalizing the inverse FFT off the unit circle. Sci Rep 9(1):14443. https://doi.org/10.1038/s41598-019-50234-9

    Article  Google Scholar 

  44. Unnikrishnan G, Joseph J, Singh K (2000) Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett 25(12):887. https://doi.org/10.1364/OL.25.000887

    Article  Google Scholar 

  45. Vijayalakshmi D, Nath MK (2020) Taxonomy of Performance Measures for Contrast Enhancement. Pattern Recognit. Image Anal 30(4):691–701. https://doi.org/10.1134/S1054661820040240

    Article  Google Scholar 

  46. Vijayalakshmi D, Nath MK (2021) A Novel Contrast Enhancement Technique using Gradient-Based Joint Histogram Equalization. Circuits Syst Signal Process 40(8):3929–3967. https://doi.org/10.1007/s00034-021-01655-3

    Article  Google Scholar 

  47. Vijayalakshmi D, Nath MK, Acharya OP (2020) A Comprehensive Survey on Image Contrast Enhancement Techniques in Spatial Domain. Sens Imaging 21(1):1–40. https://doi.org/10.1007/s11220-020-00305-3

    Article  Google Scholar 

  48. Wang X, Li Y (2021) Chaotic image encryption algorithm based on hybrid multi-objective particle swarm optimization and DNA sequence. Opt Lasers Eng 137:10–6393. https://doi.org/10.1016/j.optlaseng.2020.106393

    Article  Google Scholar 

  49. Wang T, Wang M (2020) Hyperchaotic image encryption algorithm based on bit-level permutation and DNA encoding. Opt Laser Technol 132:163550. https://doi.org/10.1016/j.optlastec.2020.106355

    Article  Google Scholar 

  50. Wang J, Chen X, Zeng J, Wang Q-H, Hu Y (2019) Asymmetric cryptosystem using improved equal modulus decomposition in cylindrical diffraction domain. IEEE Access 7:66234–66241. https://doi.org/10.1109/ACCESS.2019.2917994

    Article  Google Scholar 

  51. Wen H, Yu S, Lü J (2019) Breaking an image encryption algorithm based on DNA encoding and spatiotemporal chaos. Entropy 21(3):246. https://doi.org/10.3390/e21030246

    Article  MathSciNet  Google Scholar 

  52. Wu J, Liu W, Liu Z, Liu S (2015) Cryptanalysis of an asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Appl Opt 54(30):8921. https://doi.org/10.1364/AO.54.008921

    Article  Google Scholar 

  53. Wu J, Liao X, Yang B (2018) Image encryption using 2D Hénon-Sine map and DNA approach. Signal Process 153:11–23. https://doi.org/10.1016/j.sigpro.2018.06.008

    Article  Google Scholar 

  54. Yadav AK, Singh P, Singh K (2018) Cryptosystem based on devil’s vortex Fresnel lens in the fractional Hartley domain. J Opt 47(2):208–219. https://doi.org/10.1007/s12596-017-0435-9

    Article  Google Scholar 

  55. Yuan S, Jiang T, Jing Z (2011) Bifurcation and chaos in the Tinkerbell map. Int J Bifurcation Chaos 21(11):3137–3156. https://doi.org/10.1142/S0218127411030581

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang Y (2020) Cryptanalyzing an image cryptosystem based on circular inter-intra pixels bit-level permutation. IEEE Access 8:94810–94816. https://doi.org/10.1109/ACCESS.2020.2995839

    Article  Google Scholar 

  57. Zhang Q, Guo L, Wei X (Dec.2010) Image encryption using DNA addition combining with chaotic maps. Math Comput Model 52(11):2028–2035. https://doi.org/10.1016/j.mcm.2010.06.005

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhen P, Zhao G, Min L, Jin X (2016) Chaos-based image encryption scheme combining DNA coding and entropy. Multimed Tools Appl 75(11):6303–6319. https://doi.org/10.1007/s11042-015-2573-x

    Article  Google Scholar 

  59. Zhu S, Zhu C (2020) Secure image encryption algorithm based on hyperchaos and dynamic DNA coding. Entropy 22(7):772. https://doi.org/10.3390/e22070772

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was funded by award reference number 09/1152(0012)/2019-EMR-1 from Council of Scientific & Industrial Research (CSIR), India, a premier national R&D organization. The contents of the publication are solely the responsibility of the authors and do not necessarily represent the official views of the Council of Scientific & Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachin, Singh, P. Asymmetric Cryptosystem Based on Biological Mutation Operation in Chirp-Z Domain. Multimed Tools Appl 82, 42439–42463 (2023). https://doi.org/10.1007/s11042-023-15190-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15190-7

Keywords

Navigation