Skip to main content
Log in

High discriminant features for writer-independent online signature verification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The application of online signature is promising. However, its huge intra-individual variability and its extremely low inter-class distance brought by forged signatures make it difficult for even state-of-the-art online signature algorithms to be applied in practical scenarios on a large scale. This paper proposes a semantic-driven extraction method of high discriminative features for writer-independent online signature verification, addressing the problem of representation learning with high discriminative features. The semantic-driven model aims at learning the high-level semantic representation of the writer’s inherent signature habits, and it has combined the advantages of LSTM and CNN. Furthermore, several global feature descriptors are designed to extract writer habitual features such as speed, and writing pressure at keystroke positions. The most difficult, writer-independent, 1v1 experiments on the three benchmark data sets of MCYT-100, SUSIG, and MOBISIG were performed, and the results show that the performance of the proposed method is better than that of the state-of-the-art methods, and its performance on the MCYT-100 dataset is 16% higher than the second-best method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahrabian K, Babaali B (2019) On usage of autoencoders and siamese networks for online handwritten signature verification. Neural Comput Applic 31 (12):9321–9334. https://doi.org/10.1007/s00521-018-3844-z

    Article  Google Scholar 

  2. Alexandre D, Chang C-P, Peng W-H, Hang H-M (2018) An autoencoder-based learned image compressor: Description of challenge proposal by nctu. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. p 2539–2542, DOI https://doi.org/10.48550/arXiv.1902.07385

  3. Antal M, Szabó LZ, Tordai T (2018) Online signature verification on mobisig finger-drawn signature corpus. Mob Inf Syst 2018:1–16. https://doi.org/10.1155/2018/3127042

    Article  Google Scholar 

  4. Caruana M, Vera-Rodriguez R, Tolosana R (2021) Analysing and exploiting complexity information in on-line signature verification. In: ICPR International Workshops and Challenges: Virtual Event. Springer International Publishing, p 501–513, DOI https://doi.org/10.1007/978-3-030-68821-9_42

  5. Chandra S, Singh KK, Kumar S, Ganesh K, Sravya L, Kumar BP (2021) A novel approach to validate online signature using machine learning based on dynamic features. Neural Comput Applic 33:1–20. https://doi.org/10.1007/s00521-021-05838-6

    Article  Google Scholar 

  6. Diaz M, Ferrer MA, Impedovo D, Malik MI, Pirlo G, Plamondon R (2019) A perspective analysis of handwritten signature technology. ACM Comput Surv (Csur) 51(6):1–39. https://doi.org/10.1145/3274658

    Article  Google Scholar 

  7. Diaz M, Ferrer MA, Quintana JJ (2019) Anthropomorphic features for on-line signatures. IEEE Trans Patt Anal Mach Intell 41(12):2807–2819. https://doi.org/10.1109/TPAMI.2018.2869163

    Article  Google Scholar 

  8. Diaz M, Fischer A, Ferrer. MA, Plamondon R (2018) Dynamic signature verification system based on one real signature. IEEE Trans Cybern 48 (1):228–239. https://doi.org/10.1109/TCYB.2016.2630419

    Article  Google Scholar 

  9. Diaz M, Fischer A, Plamondon R, Ferrer MA (2015) Towards an automatic on-line signature verifier using only one reference per signer. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR). p 631–635, DOI https://doi.org/10.1109/ICDAR.2015.7333838

  10. Fiérrez-Aguilar J, Nanni L, Lopez-Pealba J, Ortega-Garcia J, Maltoni D (2005) An on-line signature verification system based on fusion of local and global information. In: Lecture Notes in Computer Science, vol 3087. p 523–532, DOI https://doi.org/10.1007/978-3-540-25976-3_27

  11. Gal Y, Ghahramani Z (2016) A theoretically grounded application of dropout in recurrent neural networks. Adv Neural Inf Process Syst 29:1019–1027. https://doi.org/10.48550/arXiv.1512.05287

    Article  Google Scholar 

  12. Ghosh R (2021) A recurrent neural network based deep learning model for offline signature verification and recognition system. Expert Syst Appl 168:114249. https://doi.org/10.1016/j.eswa.2020.114249

    Article  Google Scholar 

  13. Graves A, Fernández S, Schmidhuber J (2005) Bidirectional lstm networks for improved phoneme classification and recognition. In: International conference on artificial neural networks. Springer, p 799–804, DOI https://doi.org/10.1007/11550907_126

  14. Gupta D, Rani S, Ahmed SH, Verma S, Ijaz MF, Shafi J (2021) Edge caching based on collaborative filtering for heterogeneous icn-iot applications. Sensors 21(16):1–17. https://doi.org/10.1109/TETC.2018.2865345

    Article  Google Scholar 

  15. Guru D, Manjunatha K, Manjunath S, Somashekara M (2017) Interval valued symbolic representation of writer dependent features for online signature verification. Exp Syst Appl 80:232–243. https://doi.org/10.1016/j.eswa.2017.03.024

    Article  Google Scholar 

  16. Hadsell R, Chopra S, LeCun Y (2006) Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol 2. p 1735–1742, DOI https://doi.org/10.1109/CVPR.2006.100

  17. Hajihashemi V, Arab Ameri MM, Alavi Gharahbagh A, Bastanfard A (2020) A pattern recognition based holographic graph neuron for persian alphabet recognition. In: 2020 International Conference on Machine Vision and Image Processing (MVIP), p 1–6, DOI https://doi.org/10.1109/MVIP49855.2020.9116913

  18. Huang Z, Xu W, Yu K (2015) Bidirectional lstm-crf models for sequence tagging. https://doi.org/10.48550/arXiv.1508.01991

  19. Impedovo D, Pirlo G (2021) Automatic signature verification in the mobile cloud scenario: survey and way ahead. IEEE Trans Emerg Top Comput 9 (1):554–568. https://doi.org/10.1109/TETC.2018.2865345

    Article  Google Scholar 

  20. Impedovo D, Pirlo G (2021) Automatic signature verification in the mobile cloud scenario: Survey and way ahead. IEEE Trans Emerg Top Comput 9(1):554–568. https://doi.org/10.1109/TETC.2018.2865345

    Article  Google Scholar 

  21. Jampour M, Abbaasi S, Javidi M (2021) Capsnet regularization and its conjugation with resnet for signature identification

  22. Jia Y, Huang L, Chen H (2019) A two-stage method for online signature verification using shape contexts and function features. Sensors 19(8):1808. https://doi.org/10.3390/s19081808

    Article  Google Scholar 

  23. Kholmatov A, Yanikoglu B (2009) Susig: an on-line signature database, associated protocols and benchmark results. Pattern Anal Applic 12(3):227–236. https://doi.org/10.1007/s10044-008-0118-x

    Article  MathSciNet  Google Scholar 

  24. Lai S, Jin L (2019) Recurrent adaptation networks for online signature verification. IEEE Trans Inf Forensic Secur 14(6):1624–1637. https://doi.org/10.1109/TIFS.2018.2883152

    Article  Google Scholar 

  25. Lai S, Jin L, Yang W (2017) Online signature verification using recurrent neural network and length-normalized path signature descriptor. In: 2017 14th IAPR international conference on document analysis and recognition (ICDAR), vol 1. IEEE, p 400–405, DOI https://doi.org/10.1109/ICDAR.2017.73

  26. Li C, Zhang X, Lin F, Wang Z, Liu J, Zhang R, Wang H (2019) A stroke-based rnn for writer-independent online signature verification. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). p 526–532, DOI https://doi.org/10.1109/ICDAR.2019.00090

  27. Liu Y, Yang Z, Yang L (2015) Online signature verification based on dct and sparse representation. IEEE Trans Cybern 45(11):2498–2511. https://doi.org/10.1109/TCYB.2014.2375959

    Article  Google Scholar 

  28. Minoofam SAH, Bastanfard A, Keyvanpour MR (2021) Trcla: a transfer learning approach to reduce negative transfer for cellular learning automata

  29. Modhej N, Bastanfard A, Teshnehlab M, Raiesdana S (2020) Pattern separation network based on the hippocampus activity for handwritten recognition. IEEE Access 8:212803–212817. https://doi.org/10.1109/ACCESS.2020.3040298

    Article  Google Scholar 

  30. Mohammed RA, Nabi RM, Mahmood SM-R, Nabi RM (2015) State-of-the-art in handwritten signature verification system. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI). p 519–525, DOI https://doi.org/10.1109/CSCI.2015.180

  31. Okawa M (2020) Online signature verification using single-template matching with time-series averaging and gradient boosting. Pattern Recogn 102:107227. https://doi.org/10.1109/IWCIA47330.2019.8955083

    Article  Google Scholar 

  32. Okawa M (2021) Time-series averaging and local stability-weighted dynamic time warping for online signature verification. Pattern Recogn 112:107699. https://doi.org/10.1016/j.patcog.2020.107699

    Article  Google Scholar 

  33. Ortega-Garcia J, Fierrez-Aguilar J, Simon D, Gonzalez J, Faundez-Zanuy M, Espinosa V, Satue A, Hernaez I, Igarza J-J, Vivaracho C et al (2003) Mcyt baseline corpus: a bimodal biometric database. IEE Proc-Vis Image Signal Process 150(6):395–401. https://doi.org/10.1049/ip-vis:20031078

    Article  Google Scholar 

  34. Pal S, Alaei A, Pal U, Blumenstein M (2015) Interval-valued symbolic representation based method for off-line signature verification. In: 2015 International Joint Conference on Neural Networks (IJCNN). p 1–6, DOI https://doi.org/10.1109/IJCNN.2015.7280518

  35. Pirlo G, Cuccovillo V, Diaz-Cabrera M, Impedovo D, Mignone P (2015) Multidomain verification of dynamic signatures using local stability analysis. IEEE Trans Hum-Mach Syst 45(6):805–810. https://doi.org/10.1109/THMS.2015.2443050

    Article  Google Scholar 

  36. Rani S, Koundal D, Kavita, Ijaz MF, Elhoseny M, Alghamdi MI (2021) An optimized framework for wsn routing in the context of industry 4.0. Sensors 21(19):1–15. https://doi.org/10.3390/s21196474

    Article  Google Scholar 

  37. Sae-Bae N, Memon N (2014) Online signature verification on mobile devices. IEEE Trans Inf Forensic Secur 9(6):933–947. https://doi.org/10.1109/TIFS.2014.2316472

    Article  Google Scholar 

  38. Sae-Bae N, Memon N, Sooraksa P (2018) Distinctiveness, complexity, and repeatability of online signature templates. Pattern Recogn 84:332–344. https://doi.org/10.1016/j.patcog.2018.07.024

    Article  Google Scholar 

  39. Sharma A, Sundaram S (2018) On the exploration of information from the dtw cost matrix for online signature verification. IEEE Trans Cyberne 48 (2):611–624. https://doi.org/10.1109/TCYB.2017.2647826

    Article  Google Scholar 

  40. Srinivasu PN, SivaSai JG, Ijaz MF, Bhoi AK, Kim W, Kang JJ (2021) Classification of skin disease using deep learning neural networks with mobilenet v2 and lstm. Sensors 21(8):1–27. https://doi.org/10.3390/s21082852

    Article  Google Scholar 

  41. Tang L, Kang W, Fang Y (2018) Information divergence-based matching strategy for online signature verification. IEEE Trans Inf Forensic Secur 13(4):861–873. https://doi.org/10.1109/TIFS.2017.2769023

    Article  Google Scholar 

  42. Tolosana R, Delgado-Santos P, Perez-Uribe A, Vera-Rodriguez R, Fierrez J, Morales A (2021) Deepwritesyn: on-line handwriting synthesis via deep short-term representations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 35. p 600–608. https://arxiv.org/abs/2009.06308

  43. Tolosana R, Vera-Rodriguez R, Fierrez J, Ortega-Garcia J (2018) Exploring recurrent neural networks for on-line handwritten signature biometrics. IEEE Access 6:5128–5138. https://doi.org/10.1109/ACCESS.2018.2793966

    Article  Google Scholar 

  44. Tolosana R, Vera-Rodriguez R, Fierrez J, Ortega-Garcia J (2021) Deepsign: deep on-line signature verification. IEEE Trans Biom Behav Identity Sci 3(2):229–239. https://doi.org/10.1109/TBIOM.2021.3054533

    Article  Google Scholar 

  45. Vera-Rodriguez R, Tolosana R, Caruana M, Manzano G, Gonzalez-Garcia C, Fierrez J, Ortega-Garcia J (2019) Deepsigncx: signature complexity detection using recurrent neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). p 1326–1331, DOI https://doi.org/10.1109/ICDAR.2019.00214

  46. Vorugunti CS, Gorthi RKS, Pulabaigari V (2019) Online signature verification by few-shot separable convolution based deep learning. In: 2019 International Conference on Document Analysis and Recognition (ICDAR). p 1125–1130, DOI https://doi.org/10.1109/ICDAR.2019.00182

  47. Vorugunti CS, Pulabaigari V, Gorthi RKSS, Mukherjee P (2020) Osvfusenet: online signature verification by feature fusion and depth-wise separable convolution based deep learning. Neurocomputing 409:157–172. https://doi.org/10.1016/j.neucom.2020.05.072

    Article  Google Scholar 

  48. Xia X, Chen Z, Luan F, Song X (2017) Signature alignment based on gmm for on-line signature verification. Pattern Recog 65:188–196. https://doi.org/10.1016/j.patcog.2016.12.019

    Article  Google Scholar 

  49. Xia X, Song X, Luan F, Zheng J, Chen Z, Ma X (2018) Discriminative feature selection for on-line signature verification. Pattern Recog 74:422–433. https://doi.org/10.1016/j.patcog.2017.09.033

    Article  Google Scholar 

  50. Yang L, Cheng Y, Wang X, Liu Q (2018) Online handwritten signature verification using feature weighting algorithm relief. Soft Comput 22 (23):7811–7823. https://doi.org/10.1007/s00500-018-3477-2

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Key scientific research fund of Xihua University (Grant No: Z17134), Xihua University Key Laboratory Development Program (Grant No: szjj2017-065), Xihua University Graduate Innovation Fund Research Project (Grant No: YCJJ2021032) and Sichuan science and technology program (Grant No: 2021YFG0022,2019YFG0108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Gao.

Ethics declarations

Conflict of Interests

The authors declare that there is no any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, J., Xie, C. & Gao, Z. High discriminant features for writer-independent online signature verification. Multimed Tools Appl 82, 38447–38465 (2023). https://doi.org/10.1007/s11042-023-14638-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14638-0

Keywords

Navigation