Skip to main content
Log in

Multilayer extreme learning machine: a systematic review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Majority of the learning algorithms used for the training of feedforward neural networks (FNNs), such as backpropagation (BP), conjugate gradient method, etc. rely on the traditional gradient method. Such algorithms have a few drawbacks, including slow convergence, sensitivity to noisy data, local minimum problem, etc. One of the alternatives to overcome such issues is Extreme Learning Machine (ELM), which requires less training time, ensures global optimum and enhanced generalization in neural networks. ELM has a single hidden layer, which poses memory constraints in some problem domains. An extension to ELM, Multilayer ELM (ML-ELM) performs unsupervised learning by utilizing ELM autoencoders and eliminates the need of parameter tuning, enabling better representation learning as it consists of multiple layers. This paper provides a thorough review of ML-ELM architecture development and its variants and applications. The state-of-the-art comparative analysis between ML-ELM and other machine and deep learning classifiers demonstrate the efficacy of ML-ELM in the niche domains of Computer Science which further justifies its competency and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Allen EJ, St-Yves G, Wu Y et al (2022) A massive 7t fmri dataset to bridge cognitive neuroscience and artificial intelligence. Nat Neurosci 25 (1):116–126

    Google Scholar 

  2. An L, Bhanu B (2012) Image super-resolution by extreme learning machine. In: 2012 19th IEEE international conference on image processing. IEEE, Orlando, pp 2209–2212

  3. Andrushia AD, Thangarajan R (2020) Rts-elm: an approach for saliency-directed image segmentation with ripplet transform. Pattern Anal Applic 23 (1):385–397

    Google Scholar 

  4. Antal B, Hajdu A (2014) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Diabetic+Retinopathy+Debrecen+Data+Set. Accessed 18 Feb 2022

  5. Bal PR, Kumar S (2020) Wr-elm: Weighted regularization extreme learning machine for imbalance learning in software fault prediction. IEEE Trans Reliab 69:1355–1375

    Google Scholar 

  6. Baradarani A, Wu QJ, Ahmadi M (2013) An efficient illumination invariant face recognition framework via illumination enhancement and dd-dtcwt filtering. Pattern Recogn 46(1):57–72

    Google Scholar 

  7. Birkl C (2017) Oxford battery degradation dataset 1. University of Oxford. https://doi.org/10.5287/bodleian:KO2kdmYGghttps://doi.org/10.5287/bodleian:KO2kdmYGg

  8. Cambria E, Huang GB, Kasun LLC et al (2013) Extreme learning machines [trends & controversies]. IEEE Intell Syst 28(6):30–59

    Google Scholar 

  9. Cao R, Cao J, Mei JP et al (2019b) Radar emitter identification with bispectrum and hierarchical extreme learning machine. Multimed Tools Appl 78(20):28,953–28,970

  10. Cao J, Hao J, Lai X et al (2016) Ensemble extreme learning machine and sparse representation classification. J Frankl Inst 353(17):4526–4541

    MathSciNet  MATH  Google Scholar 

  11. Cao J, Lin Z, Huang GB et al (2012) Voting based extreme learning machine. Inf Sci 185(1):66–77

    MathSciNet  Google Scholar 

  12. Cao F, Yang Z, Ren J et al (2019a) Local block multilayer sparse extreme learning machine for effective feature extraction and classification of hyperspectral images. IEEE Trans Geosci Remote Sens 57(8):5580–5594

  13. Chang NB, Han M, Yao W et al (2010) Change detection of land use and land cover in an urban region with spot-5 images and partial lanczos extreme learning machine. J Appl Remote Sens 4(1):043,551

    Google Scholar 

  14. Chapelle O, Schölkopf B, Zien A (2006) The geometric basis of semi-supervised learning. In: Semi-Supervised Learning. MIT Press, pp 217–235

  15. Chen M, Li Y, Luo X et al (2018) A novel human activity recognition scheme for smart health using multilayer extreme learning machine. IEEE Internet Things J 6(2):1410–1418

    Google Scholar 

  16. Chen F, Ou T (2011) Sales forecasting system based on gray extreme learning machine with taguchi method in retail industry. Expert Syst Appl 38 (3):1336–1345

    Google Scholar 

  17. Chen B, Xing L, Xu B et al (2017) Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering. IEEE Trans Signal Process 65(11):2888–2901

    MathSciNet  MATH  Google Scholar 

  18. Cheng G, Han J, Lu X (2017) Remote sensing image scene classification: benchmark and state of the art. Proc IEEE 105(10):1865–1883

    Google Scholar 

  19. Chua TS, Tang J, Hong R et al (2009) Nus-wide: a real-world web image database from national university of singapore. In: Proceedings of the ACM international conference on image and video retrieval. pp 1–9

  20. Cole R, Fanty M (1994) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/ISOLET. Accessed 2 March 2022

  21. Dai H, Cao J, Wang T et al (2019) Multilayer one-class extreme learning machine. Neural Netw 115:11–22

    Google Scholar 

  22. Dailey M, Cottrell G, Reilly J (2001) California facial expressions, cafe. Unpublished digital images University of California. Computer Science and Engineering Department, San Diego

    Google Scholar 

  23. Dash S, Verma S, Bevinakoppa S et al (2022) Guidance image-based enhanced matched filter with modified thresholding for blood vessel extraction. Symmetry 14(2):194

    Google Scholar 

  24. Dash S, Verma S, Khan M et al (2021) A hybrid method to enhance thick and thin vessels for blood vessel segmentation. Diagnostics 11(11):2017

    Google Scholar 

  25. Deepa M, Rajalakshmi M (2016) A fuzzy clustering approach based on multi-layer extreme learning machine for brain tumor detection and classification. International Journal of Advanced Engineering Technology

  26. Deng C, Huang G, Xu J et al (2015) Extreme learning machines: new trends and applications. Sci China Inf Sci 58(2):1–16

    Google Scholar 

  27. Ding S, Zhang N, Xu X et al (2015) Deep extreme learning machine and its application in eeg classification. Math Probl Eng, 2015

  28. Duan L, Bao M, Miao J et al (2016) Classification based on multilayer extreme learning machine for motor imagery task from eeg signals. Procedia Comput Sci 88:176–184

    Google Scholar 

  29. Fei X, Zhou W, Shen L et al (2019) Ultrasound-based diagnosis of breast tumor with parameter transfer multilayer kernel extreme learning machine. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, p 933-936, Berlin

  30. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: 2004 conference on computer vision and pattern recognition workshop. IEEE, Washington, pp 178–178

  31. Filannino M (2011) Dbworld e-mail classification using a very small corpus. Univ Manch 86:6–12

    Google Scholar 

  32. Ghosh S, Mukherjee H, Obaidullah SM et al (2018) A survey on extreme learning machine and evolution of its variants. In: International Conference on Recent Trends in Image Processing and Pattern Recognition. Springer, Singapore, pp 572–583

  33. Goebel K, Saha B (2010) Dashlink-li-ion battery aging datasets. DAWN MCINTOSH

  34. Good RP, Kost D, Cherry GA (2010) Introducing a unified pca algorithm for model size reduction. IEEE Trans Semicond Manuf 23(2):201–209

    Google Scholar 

  35. Goodfellow I, Pouget-Abadie J, Mirza M et al (2014) Generative adversarial nets. In: Advances in neural information processing systems. p 2672–2680. Curran Associates, Inc., Red Hook

  36. Graham DB, Allinson NM (1998) Characterising virtual eigensignatures for general purpose face recognition. In: Face Recognition. Springer, Berlin, pp 446–456

  37. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. California Institute of Technology. https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001

  38. Güldener U, Münsterkötter M, Kastenmüller G et al (2005) Cygd: the comprehensive yeast genome database. Nucleic Acids Res 33 (suppl_1):D364–D368

    Google Scholar 

  39. Guo T, Zhang L, Tan X (2017) Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput 9(4):581–595

    Google Scholar 

  40. Gupta D, Rani S, Ahmed SH et al (2021) Edge caching based on collaborative filtering for heterogeneous icn-iot applications. Sensors 21(16):5491

    Google Scholar 

  41. Han F, Jiang J, Ling QH et al (2019) A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing 335:261–273

    Google Scholar 

  42. Hassanpour A, Moradikia M, Adeli H et al (2019) A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals. Expert Syst 36(6):e12494

    Google Scholar 

  43. He D, Le BT, Xiao D et al (2019) Coal mine area monitoring method by machine learning and multispectral remote sensing images. Infrared Phys Technol 103:103070

  44. He Q, Shang T, Zhuang F et al (2013) Parallel extreme learning machine for regression based on mapreduce. Neurocomputing 102:52–58

    Google Scholar 

  45. Hemanth JD, Anitha J, Ane BK (2017) Fusion of artificial neural networks for learning capability enhancement: Application to medical image classification. Expert Syst 34(6):e12225

    Google Scholar 

  46. Hernandez-Hernandez RA, Martinez-Hernandez U, Rubio-solis A (2020) Multilayer fuzzy extreme learning machine applied to active classification and transport of objects using an unmanned aerial vehicle. In: 2020 IEEE International conference on fuzzy systems (FUZZ-IEEE). IEEE, Glasgow, pp 1–8

  47. Huang GB (2012) Extreme learning machine: learning without iterative tuning School of Electrical and Electronic Engineering. Nanyang Technological University, Singapore

    Google Scholar 

  48. Huang GB, Bai Z, Kasun LLC et al (2015b) Local receptive fields based extreme learning machine. IEEE Comput Intell Mag 10(2):18–29

  49. Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16-18):3056–3062

    Google Scholar 

  50. Huang GB, Chen YQ, Babri HA (2000) Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw 11 (3):799–801

    Google Scholar 

  51. Huang GB, Chen L, Siew CK et al (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

  52. Huang G, Huang GB, Song S et al (2015a) Trends in extreme learning machines: a review. Neural Netw 61:32–48

  53. Huang Z, Lei D, Huang D et al (2019) Boundary moving least square method for 2d elasticity problems. Eng Anal Bound Elem 106:505–512

    MathSciNet  MATH  Google Scholar 

  54. Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. International journal of machine learning and cybernetics 2(2):107–122

    Google Scholar 

  55. Huang GB, Zhu QY, Siew CK (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1-3):489–501

  56. Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Patt Anal Mach Intell 16(5):550–554

    Google Scholar 

  57. Ijaz MF, Attique M, Son Y (2020) Data-driven cervical cancer prediction model with outlier detection and over-sampling methods. Sensors 20 (10):2809

    Google Scholar 

  58. Jahromi AN, Hashemi S, Dehghantanha A et al (2020) An improved two-hidden-layer extreme learning machine for malware hunting. Comput Secur 89:101655

    Google Scholar 

  59. Jia X, Li X, Du H et al (2016) Local invariance representation learning algorithm with multi-layer extreme learning machine. In: International Conference on Neural Information Processing. Springer, Kyoto, pp 505–513

  60. Jia X, Li X, Jin Y et al (2019) Region-enhanced multi-layer extreme learning machine. Cogn Comput 11(1):101–109

    Google Scholar 

  61. Jiang X, Yan T, Xu Q et al (2018) Remote sensing image scene classification based on densely connected multilayer kernel elm. In: 2018 Australian & New Zealand Control Conference (ANZCC). IEEE, Melbourne, pp 81–86

  62. Johnson WB, Lindenstrauss J (1984) Extensions of lipschitz mappings into a hilbert space. Contemp Math 26(189-206):1

    MathSciNet  MATH  Google Scholar 

  63. Johnson KA et al (2001) The whole brain atlas. Harvard Medical School

  64. Kasun LLC, Zhou H, Huang GB et al (2013) Representational learning with extreme learning machine for big data. IEEE Intell Syst 28(6):31–34

    Google Scholar 

  65. Khan AW, Khan MU, Khan JA et al (2021) Analyzing and evaluating critical challenges and practices for software vendor organizations to secure big data on cloud computing: an ahp-based systematic approach. IEEE Access 9:107309–107332

    Google Scholar 

  66. Klahr D, Siegler RS (1978) The representation of children’s knowledge. In: Advances in child development and behavior, vol 12. Elsevier, New York, pp 61–116

  67. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images. Technical report, University of Toronto

  68. Kumar Y, Koul A, Singla R et al (2022) Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humanized Comput 13:1–28

    Google Scholar 

  69. Kurgan LA, Cios KJ, Tadeusiewicz R et al (2001) Knowledge discovery approach to automated cardiac spect diagnosis. Artif Intell Med 23 (2):149–169

    Google Scholar 

  70. Kushmerick N (1999) Learning to remove internet advertisements. In: Proceedings of the third annual conference on Autonomous Agents. pp 175–181. Association for Computing Machinery, New York

  71. Le BT, Xiao D, Mao Y et al (2019) Coal quality exploration technology based on an incremental multilayer extreme learning machine and remote sensing images. IEEE Trans Geosci Remote Sens 57(7):4192–4201

  72. LeCun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Google Scholar 

  73. LeCun Y, Huang FJ, Bottou L (2004) Learning methods for generic object recognition with invariance to pose and lighting. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. IEEE, Washington, pp II–104

  74. Lee J, Sung C, Oh J (2019) Terrain referenced navigation using a multilayer radial basis function-based extreme learning machine. Int J Aerosp Eng 2019:13–23

    Google Scholar 

  75. Lekamalage CKL, Song K, Huang GB et al (2017) Multi layer multi objective extreme learning machine. In: 2017 IEEE International Conference on Image Processing (ICIP). IEEE, p 1297–1301, Beijing

  76. Li L, Sun R, Cai S et al (2019) A review of improved extreme learning machine methods for data stream classification. Multimed Tools Appl 78 (23):33375–33400

    Google Scholar 

  77. Liangjun C, Honeine P, Hua Q et al (2018) Correntropy-based robust multilayer extreme learning machines. Pattern Recogn 84:357–370

    Google Scholar 

  78. Lillicrap TP, Santoro A, Marris L et al (2020) Backpropagation and the brain. Nat Rev Neurosci 21:335–346

    Google Scholar 

  79. Lim TS (1997) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choicehttps://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice. Accessed 5 March 2022

  80. Liu Y, Huangfu W, Zhang H et al (2019) An efficient stochastic gradient descent algorithm to maximize the coverage of cellular networks. IEEE Trans Wirel Commun 18(7):3424–3436

    Google Scholar 

  81. Liu W, Wang Z, Liu X et al (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26

    Google Scholar 

  82. Lu H, Wang H, Yoon SW et al (2019) Real-time stencil printing optimization using a hybrid multi-layer online sequential extreme learning and evolutionary search approach. IEEE Transactions on Components. Packag Manuf Technol 9 (12):2490–2498

    Google Scholar 

  83. Luo X, Li Y, Wang W et al (2020) A robust multilayer extreme learning machine using kernel risk-sensitive loss criterion. Int J Mach Learn Cybern 11(1):197–216

    Google Scholar 

  84. Luong NC, Hoang DT, Gong S et al (2019) Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun Surv Tutorials 21(4):3133–3174

    Google Scholar 

  85. Ma Y, Shen D, Wu L et al (2019) The remaining useful life estimation of lithium-ion batteries based on the hka-ml-elm algorithm. Int J Electrochem Sci 14:7737–7757

    Google Scholar 

  86. Madessa AH, Dong J, Gan Y et al (2020) A deep learning approach for specular highlight removal from transmissive materials

  87. Mandal M, Singh PK, Ijaz MF et al (2021) A tri-stage wrapper-filter feature selection framework for disease classification. Sensors 21(16):5571

    Google Scholar 

  88. Mao Q, Hu F, Hao Q (2018) Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun Surv Tutorials 20(4):2595–2621

    Google Scholar 

  89. Mao Y, Le BT, Xiao D et al (2019) Coal classification method based on visible-infrared spectroscopy and an improved multilayer extreme learning machine. Opt Laser Technol 114:10–15

  90. Maulik U, Chakraborty D (2017) Remote sensing image classification: a survey of support-vector-machine-based advanced techniques. IEEE Geosci Remote Sens Mag 5(1):33–52

    Google Scholar 

  91. Minhas R, Mohammed AA, Wu QJ (2011) Incremental learning in human action recognition based on snippets. IEEE Trans Circuits Syst Video Technol 22(11):1529–1541

    Google Scholar 

  92. Mirza B, Kok S, Dong F (2016) Multi-layer online sequential extreme learning machine for image classification. In: Proceedings of ELM-2015 Volume 1. Springer, Hangzhou, pp 39–49

  93. Mitchell T (1999) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups. Accessed 15 Jan 2022

  94. Moore AW, Zuev D (2005) Internet traffic classification using bayesian analysis techniques. In: Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and modeling of computer systems. Association for Computing Machinery, New York, pp 50–60

  95. Mukherjee H, Obaidullah SM, Santosh K et al (2018) Line spectral frequency-based features and extreme learning machine for voice activity detection from audio signal. Int J Speech Technol 21(4):753–760

    Google Scholar 

  96. Nakai K (1996) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Yeast. Accessed 25 Jan 2022

  97. Nayak DR, Das D, Dash R et al (2020) Deep extreme learning machine with leaky rectified linear unit for multiclass classification of pathological brain images. Multimed Tools Appl 79(21):15381–15396

    Google Scholar 

  98. Noushahr HG, Ahmadi S, Casey A (2015) Fast handwritten digit recognition with multilayer ensemble extreme learning machine. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence. Springer, Cambridge, pp 77–89

  99. Orimoloye LO, Sung MC, Ma T et al (2020) Comparing the effectiveness of deep feedforward neural networks and shallow architectures for predicting stock price indices. Expert Syst Appl 139:112828

    Google Scholar 

  100. Pace K (1997). http://www.dcc.fc.up.pt/ltorgo/Regression/cal_housing.html. Accessed 13 Jan 2022

  101. Panigrahi R, Borah S, Bhoi AK et al (2021a) Performance assessment of supervised classifiers for designing intrusion detection systems: a comprehensive review and recommendations for future research. Mathematics 9(6):690

  102. Panigrahi R, Borah S, Bhoi AK et al (2021b) A consolidated decision tree-based intrusion detection system for binary and multiclass imbalanced datasets. Mathematics 9(7):751

  103. Parkavi RM, Shanthi M, Bhuvaneshwari M et al (2017) Recent trends in elm and mlelm: a review. Adv Sci Technol Eng Syst J 2(1):69–75

    Google Scholar 

  104. Poggio T, Liao Q, Banburski A (2020) Complexity control by gradient descent in deep networks. Nat Commun 11(1):1–5

    MATH  Google Scholar 

  105. Raghuwanshi BS, Shukla S (2018) Class-specific extreme learning machine for handling binary class imbalance problem. Neural Netw 105:206–217

    MATH  Google Scholar 

  106. Rani S, Koundal D, Ijaz MF et al (2021) An optimized framework for wsn routing in the context of industry 4.0. Sensors 21(19):6474

    Google Scholar 

  107. Rezaei Ravari M, Eftekhari M, Saberi Movahed F (2020) Ml-ck-elm: an efficient multi-layer extreme learning machine using combined kernels for multi-label classification. Sci Iran 27(6):3005–3018

    Google Scholar 

  108. Rifai S, Vincent P, Muller X et al (2011) Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th international conference on international conference on machine learning. Omnipress, Madison, pp 833–840

  109. Rifkin R, Yeo G, Poggio T et al (2003) Regularized least-squares classification. Nato Sci Ser Sub Ser III Comput Syst Sci 190:131–154

    Google Scholar 

  110. Roul RK (2018) Detecting spam web pages using multilayer extreme learning machine. Int J Big Data Intell 5(1-2):49–61

    Google Scholar 

  111. Roul RK, Asthana SR, Kumar G (2017) Study on suitability and importance of multilayer extreme learning machine for classification of text data. Soft Comput 21(15):4239–4256

    Google Scholar 

  112. Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 1994 IEEE workshop on applications of computer vision. IEEE, Sarasota, pp 138–142

  113. Sandberg IW (1994) General structures for classification. IEEE Trans Circ Syst I Fundam Theory Appl 41(5):372–376

    MATH  Google Scholar 

  114. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Google Scholar 

  115. Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  116. She Q, Hu B, Luo Z et al (2019) A hierarchical semi-supervised extreme learning machine method for eeg recognition. Med Biol Eng Comput 57 (1):147–157

    Google Scholar 

  117. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360). IEEE, Anchorage, pp 69–73

  118. Slate DJ (1991) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/letter+recognition. Accessed 20 May 2022

  119. Smith LI (2002) A tutorial on principal components analysis. Tech. rep.

  120. Srinivasu PN, Ahmed S, Alhumam A et al (2021a) An aw-haris based automated segmentation of human liver using ct images. Comput Mater Contin 69(3):3303–3319

  121. Srinivasu PN, SivaSai JG, Ijaz MF et al (2021b) Classification of skin disease using deep learning neural networks with mobilenet v2 and lstm. Sensors 21(8):2852

  122. Su X, Sun S, Zhang S et al (2020) Improved multi-layer online sequential extreme learning machine and its application for hot metal silicon content. J Frankl Inst 357(17):12588–12608

    MATH  Google Scholar 

  123. Su X, Yin Y, Zhang S (2016) Prediction model of improved multi-layer extreme learning machine for permeability index of blast furnace. Control Theory Appl 33(12):1674–1684

    Google Scholar 

  124. Su X, Zhang S, Yin Y et al (2018a) Data-driven prediction model for adjusting burden distribution matrix of blast furnace based on improved multilayer extreme learning machine. Soft Comput 22(11):3575–3589

  125. Su X, Zhang S, Yin Y et al (2018b) Prediction model of permeability index for blast furnace based on the improved multi-layer extreme learning machine and wavelet transform. J Frankl Inst 355(4):1663–1691

  126. Su X, Zhang S, Yin Y et al (2019) Prediction model of hot metal temperature for blast furnace based on improved multi-layer extreme learning machine. Int J Mach Learn Cybern 10(10):2739–2752

    Google Scholar 

  127. Tang J, Deng C, Huang GB (2015) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821

    MathSciNet  Google Scholar 

  128. Tang J, Deng C, Huang GB et al (2014a) A fast learning algorithm for multi-layer extreme learning machine. In: 2014 IEEE International conference on image processing. IEEE, Paris, pp 175–178

  129. Tang J, Deng C, Huang GB et al (2014b) Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans Geosci Remote Sens 53(3):1174–1185

  130. Tang L, Lu Y (2020) Study of the grey verhulst model based on the weighted least square method. Phys A Stat Mech Appl 545:123615

    MathSciNet  Google Scholar 

  131. Taskar B, Guestrin C, Koller D (2003) Max-margin markov networks. Adv Neural Inf Process Syst 16:22–29

    Google Scholar 

  132. Tj Y u, Xf Yan (2020) Robust multi-layer extreme learning machine using bias-variance tradeoff. J Cent South Univ 27(12):3744–3753

    Google Scholar 

  133. Venkata Ramana B, Prasad Babu S, Venkateswarlu NB (2012) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/ILPD+(Indian+Liver+Patient+Dataset). Accessed 28 May 2022

  134. Vong CM, Chen C, Wong PK (2018) Empirical kernel map-based multilayer extreme learning machines for representation learning. Neurocomputing 310:265–276

    Google Scholar 

  135. Wang X, Han Y, Leung VC et al (2020) Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun Surv Tutorials 22 (2):869–904

    Google Scholar 

  136. Wang B, Li Y, Zhao W et al (2019) Effective crack damage detection using multilayer sparse feature representation and incremental extreme learning machine. Appl Sci 9(3):614

    Google Scholar 

  137. Wang J, Lu S, Wang SH et al (2021) A review on extreme learning machine. Multimed Tools Appl 81:41611–41660

    Google Scholar 

  138. Wang W, Vong CM, Yang Y et al (2017a) Encrypted image classification based on multilayer extreme learning machine. Multidim Syst Signal Process 28(3):851–865

  139. Wang Y, Wang A, Ai Q et al (2017b) A novel artificial bee colony optimization strategy-based extreme learning machine algorithm. Prog Artif Intell 6 (1):41–52

  140. Waugh S (1995) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/abalone. Accessed 7 Feb 2022

  141. Weisstein EW (2002) Moore-penrose matrix inverse. https://mathworldwolframcom/. Accessed 11 Dec 2021

  142. Wen X, Liu H, Yan G et al (2018) Weakly paired multimodal fusion using multilayer extreme learning machine. Soft Comput 22(11):3533–3544

    MATH  Google Scholar 

  143. Whittington JC, Bogacz R (2019) Theories of error back-propagation in the brain. Trends Cogn Sci 23(3):235–250

    Google Scholar 

  144. Widodo A, Yang BS (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6):2560–2574

    Google Scholar 

  145. Wolberg W, Mangasarian O, Coleman T et al (1990) Pattern recognition via linear programming: theory and application to medical diagnosis. In: Large-scale numerical optimization. SIAM Publications, Citeseer, Madison, pp 22–30

  146. Wong CM, Vong CM, Wong PK et al (2016) Kernel-based multilayer extreme learning machines for representation learning. IEEE Trans Neural Netw Learn Syst 29(3):757–762

    MathSciNet  Google Scholar 

  147. Wu D, Qu Z, Guo F et al (2019) Multilayer incremental hybrid cost-sensitive extreme learning machine with multiple hidden output matrix and subnetwork hidden nodes. IEEE Access 7:118422–118434

    Google Scholar 

  148. Wu X, Zhou T, Yi K et al (2021) An evolutionary multi-layer extreme learning machine for data clustering problems. In: 2021 40th chinese control conference (CCC). IEEE, Shanghai, pp 1978–1983

  149. Xia R, Chen Y, Feng Y (2020) A method to measure thermal conductivity of vacuum insulation panel using enhanced extreme learning machine model. J Therm Sci 29:623–631

    Google Scholar 

  150. Xu Y, Dai Y, Dong ZY et al (2013) Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput Applic 22(3-4):501–508

    Google Scholar 

  151. Xu X, Shan D, Li S et al (2019) Multi-label learning method based on ml-rbf and laplacian elm. Neurocomputing 331:213–219

    Google Scholar 

  152. Yaghoubi S, Fainekos G (2019) Worst-case satisfaction of stl specifications using feedforward neural network controllers: a lagrange multipliers approach. ACM Trans Embed Comput Syst (TECS) 18(5s):1–20

    Google Scholar 

  153. Yang J, Cao J, Wang T et al (2020) Regularized correntropy criterion based semi-supervised elm. Neural Netw 122:117–129

    MATH  Google Scholar 

  154. Yang W, Wang S, Hu J et al (2019) Securing deep learning based edge finger vein biometrics with binary decision diagram. IEEE Trans Ind Inform 15 (7):4244–4253

    Google Scholar 

  155. Yang ZX, Wang XB, Zhong JH (2016) Representational learning for fault diagnosis of wind turbine equipment: a multi-layered extreme learning machines approach. Energies 9(6):379

    Google Scholar 

  156. Yang Y, Wu QJ (2015) Multilayer extreme learning machine with subnetwork nodes for representation learning. IEEE Trans Cybern 46(11):2570–2583

    Google Scholar 

  157. Yang J, Xie S, Yoon S et al (2013) Fingerprint matching based on extreme learning machine. Neural Comput Applic 22(3-4):435–445

    Google Scholar 

  158. Yu W, Liu T, Valdez R et al (2010) Application of support vector machine modeling for prediction of common diseases: the case of diabetes and pre-diabetes. BMC Med Inform Decis Mak 10(1):16

    Google Scholar 

  159. Yu H, Wang J, Sun X (2019) Surveillance video online prediction using multilayer elm with object principal trajectory. SIViP 13(6):1243–1251

    Google Scholar 

  160. Zhang N, Ding S, Shi Z (2016a) Denoising laplacian multi-layer extreme learning machine. Neurocomputing 171:1066–1074

  161. Zhang N, Ding S, Zhang J (2016b) Multi layer elm-rbf for multi-label learning. Appl Soft Comput 43:535–545

  162. Zhang W, Ji H (2013) Fuzzy extreme learning machine for classification. Electron Lett 49(7):448–450

    Google Scholar 

  163. Zhang J, Li Y, Xiao W et al (2020) Non-iterative and fast deep learning: Multilayer extreme learning machines. J Frankl Inst 357(13):8925–8955

    MathSciNet  MATH  Google Scholar 

  164. Zhang C, Patras P, Haddadi H (2019a) Deep learning in mobile and wireless networking: A survey. IEEE Commun Surv Tutorials 21(3):2224–2287

  165. Zhang Y, Wu J, Zhou C et al (2017) Instance cloned extreme learning machine. Pattern Recogn 68:52–65

    Google Scholar 

  166. Zhang J, Xiao W, Li Y et al (2019b) Multilayer probability extreme learning machine for device-free localization. Neurocomputing 396:383–393

  167. Zhang L, Yang H, Jiang Z (2018) Imbalanced biomedical data classification using self-adaptive multilayer elm combined with dynamic gan. Biomed Eng Online 17(1):181

    Google Scholar 

  168. Zhao G, Liu Y, Zhou J et al (2020a) Analog circuit incipient fault diagnosis from raw signals using multi-layer extreme learning machine. In: 2020 11th International Conference on Prognostics and System Health Management (PHM-2020 Jinan). IEEE, Jinan, pp 315–321

  169. Zhao G, Wu Z, Gao Y et al (2020b) Multi-layer extreme learning machine-based keystroke dynamics identification for intelligent keyboard. IEEE Sensors J 21(2):2324–2333

  170. Zheng L, Wang Z, Zhao Z et al (2019) Research of bearing fault diagnosis method based on multi-layer extreme learning machine optimized by novel ant lion algorithm. IEEE Access 7:89845–89856

    Google Scholar 

  171. Zhou H, Huang GB, Lin Z et al (2014) Stacked extreme learning machines. IEEE Trans Cybern 45(9):2013–2025

    Google Scholar 

  172. Zwitter M, Soklic M (1988) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer. Accessed 10 Feb 2022

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Department of Science and Technology (DST), Government of India under Innovation in Science Pursuit for Inspired Research (INSPIRE) Fellowship, INSPIRE Code- IF190242, for carrying out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravneet Kaur.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Roul, R.K. & Batra, S. Multilayer extreme learning machine: a systematic review. Multimed Tools Appl 82, 40269–40307 (2023). https://doi.org/10.1007/s11042-023-14634-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14634-4

Keywords

Navigation