Skip to main content
Log in

Multiclass variance based variational decomposition system for image segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Thresholding-based approaches are widely used for image segmentation due to their low computational cost and complexity and ease of implementation. We proposed a novel framework for performing multilevel image segmentation. The present paper uses the feature of variational mode decomposition (VMD) and multiclass variance function for segmentation. The histogram-based thresholding schemes suffer from high fluctuation that leads to abnormalities and sharp specifics. VMD is applied to remove the unfavorable effects of the histogram by decomposing it into corresponding sub-modes for analysis and extraction of attributes. The Otsu function is then incorporated to generate accurate and optimal threshold values for subdivisions to meet the desire image segmentation. The experimental outcomes show that the proposed technique produces improved segmented images as compared to the other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm:
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ahmadi M, Kazemi K, Aarabi A, Niknam T, Helfroush MS (2019) Image segmentation using multilevel thresholding based on modified bird mating optimization. Multimed Tools Appl 78(16):23003–23027

    Article  Google Scholar 

  2. Akay B (2013) A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl Soft Comput 13(6):3066–3091

    Article  Google Scholar 

  3. AlZu’bi S, Shehab M, Al-Ayyoub M, Jararweh Y, Gupta B (2020) Parallel implementation for 3d medical volume fuzzy segmentation. Pattern Recogn Lett 130:312–318

    Article  Google Scholar 

  4. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Syst Appl 42(3):1573–1601

    Article  Google Scholar 

  5. Bhandari AK, Singh N, Shubham S (2019) An efficient optimal multilevel image thresholding with electromagnetism-like mechanism. Multimed Tools Appl 78(24):35733–35788

    Article  Google Scholar 

  6. Chen, H., Qi, X., Yu, L., & Heng, P. A. (2016). DCAN: deep contour-aware networks for accurate gland segmentation. In proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2487-2496).

  7. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  8. Chouhan SS, Kaul A, Singh UP (2018) Soft computing approaches for image segmentation: a survey. Multimed Tools Appl 77(21):28483–28537

    Article  Google Scholar 

  9. Chouksey M, Jha RK, Sharma R (2020) A fast technique for image segmentation based on two Meta-heuristic algorithms. Multimed Tools Appl 79

  10. De Albuquerque MP, Esquef IA, Mello AG (2004) Image thresholding using Tsallis entropy. Pattern Recogn Lett 25(9):1059–1065

    Article  Google Scholar 

  11. Dhanachandra N, Chanu YJ (2020) An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm. Multimed Tools Appl 79

  12. Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  MathSciNet  MATH  Google Scholar 

  13. Dragomiretskiy K, Zosso D (2015) Two-dimensional variational mode decomposition. In: In international workshop on energy minimization methods in computer vision and pattern recognition. Springer, Cham, pp 197–208

    Google Scholar 

  14. Hao D, Li Q, Li C (2017) Histogram-based image segmentation using variational mode decomposition and correlation coefficients. SIViP 11(8):1411–1418

    Article  Google Scholar 

  15. Kang S, Liang Y, Wang Y, Mikulovich VI (2019) Color image encryption method based on 2D-variational mode decomposition. Multimed Tools Appl 78(13):17719–17738

    Article  Google Scholar 

  16. Kapur JN, Sahoo PK, Wong AK (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Gr Image Process 29(3):273–285

    Article  Google Scholar 

  17. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19(1):41–47

    Article  Google Scholar 

  18. Kumar M, Bhandari AK, Singh N, Ghosh A (2021) A new multilevel histogram thresholding approach using variational mode decomposition. Multimed Tools Appl 80(7):11331–11363

    Article  Google Scholar 

  19. Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory 37(1):145–151

    Article  MathSciNet  MATH  Google Scholar 

  20. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).

  21. Masud M, Hossain MS, Alhumyani H, Alshamrani SS, Cheikhrouhou O, Ibrahim S, Muhammad G, Rashed AEE, Gupta BB (2021) Pre-trained convolutional neural networks for breast cancer detection using ultrasound images. ACM Trans Internet Technol 21(4):1–17

    Article  Google Scholar 

  22. McKinley, R., Wepfer, R., Gundersen, T., Wagner, F., Chan, A., Wiest, R., & Reyes, M. (2016). Nabla-net: a deep dag-like convolutional architecture for biomedical image segmentation. In international workshop on Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries (pp. 119-128). Springer, Cham.

  23. Mukhopadhyay S, Paul M, Pal R, De D (2021) Tea leaf disease detection using multi-objective image segmentation. Multimed Tools Appl 80(1):753–771

    Article  Google Scholar 

  24. Nunes JC, Bouaoune Y, Delechelle E, Niang O, Bunel P (2003) Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 21(12):1019–1026

    Article  MATH  Google Scholar 

  25. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  26. Reisenhofer R, Bosse S, Kutyniok G, Wiegand T (2018) A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process Image Commun 61:33–43

    Article  Google Scholar 

  27. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: convolutional networks for biomedical image segmentation. In international conference on medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.

  28. Sahoo P, Wilkins C, Yeager J (1997) Threshold selection using Renyi's entropy. Pattern Recogn 30(1):71–84

    Article  MATH  Google Scholar 

  29. Sahoo PK, Soltani SAKC, Wong AK (1988) A survey of thresholding techniques. Comput Gr Image Process 41(2):233–260

    Article  Google Scholar 

  30. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–166

    Article  Google Scholar 

  31. Sharma A, Chaturvedi R, Kumar S, Dwivedi UK (2020) Multi-level image thresholding based on Kapur and Tsallis entropy using firefly algorithm. J Interdiscip Math 23(2):563–571

    Article  Google Scholar 

  32. Shen J, Du Y, Li X (2014) Interactive segmentation using constrained Laplacian optimization. IEEE Trans Circuits Syst Video Technol 24(7):1088–1100

    Article  Google Scholar 

  33. Shubham S, Bhandari AK (2019) A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation. Multimed Tools Appl:1–42

  34. Singh N, Bhandari AK (2020) Image contrast enhancement with brightness preservation using an optimal gamma and logarithmic approach. IET Image Process 14(4):794–805

    Article  Google Scholar 

  35. Singh N, Bhandari AK (2021) Principal component analysis-based low-light image enhancement using reflection model. IEEE Trans Instrum Meas 70:1–10

    Google Scholar 

  36. Singh N, Bhandari AK, Kumar IV (2021) Fusion-based contextually selected 3D Otsu thresholding for image segmentation. Multimed Tools Appl 80(13):19399–19420

    Article  Google Scholar 

  37. Singh N, Bhandari AK, Singh A (2020) Variational mode decomposition-based multilevel threshold selection scheme for color image segmentation. Circuits, Syst Signal Process:1–43

  38. Su J, Vargas DV, Sakurai K (2019) One pixel attack for fooling deep neural networks. IEEE Trans Evol Comput 23(5):828–841

    Article  Google Scholar 

  39. The Berkeley Segmentation Dataset and Benchmark (https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/)

  40. Tsai WH (1985) Moment-preserving thresolding: a new approach. Comput Gr Image Process 29(3):377–393

    Article  Google Scholar 

  41. Wang H, Li Z, Li Y, Gupta BB, Choi C (2020) Visual saliency guided complex image retrieval. Pattern Recogn Lett 130:64–72

    Article  Google Scholar 

  42. Wu Y, Peng X, Ruan K, Hu Z (2017) Improved image segmentation method based on morphological reconstruction. Multimed Tools Appl 76(19):19781–19793

    Article  Google Scholar 

  43. Yu H, He F, Pan Y (2020) A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimed Tools Appl 79(9):5743–5765

    Article  Google Scholar 

  44. Zhang Y, Zhang S, Ji X (2018) EEG-based classification of emotions using empirical mode decomposition and autoregressive model. Multimed Tools Appl 77(20):26697–26710

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Kumar Bhandari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Bhandari, A.K. Multiclass variance based variational decomposition system for image segmentation. Multimed Tools Appl 82, 41609–41639 (2023). https://doi.org/10.1007/s11042-023-14593-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14593-w

Keywords

Navigation