Skip to main content
Log in

Spectral-spatial 3D dynamic trimmed median filter for removal of impulse noise in remotely sensed images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Multiband images get immense importance in the field of remote sensing image analysis and applications. The remote sensing images get affected by unwanted impulses because of the sensor and bit errors during acquisition and transmission, which hampers remote sensing image analysis and applications by altering the image scenes. The restoration of corrupt satellite images gain extensive consequences and is indeed a great challenge for remote sensing applications. Several spectral filters are proposed in the literature for the last few decades but they fail to preserve the valuable circumstances. In this study, a spectral-spatial 3D dynamic median filter with spatial-spectral property is proposed to deal with the impulse noise in the remotely sensed images without compromising the image quality. Our objective is to remove the impulse noise and restore the original details of the corrupted images with greater efficiency by constructing a 3D dynamic kernel, which can adaptively change the number of neighbours of the corrupted pixel, depending upon the degree of distortions in the neighbourhood. We have also concentrated on the high correlation among the consecutive spectral channels for restoring the information of the corrupted pixel. The proposed filtering method has been rigorously analyzed for varying features of satellite image datasets in the presence of different noise densities. The outcome of the proposed filter is compared with the existing state-of-the-art and recent non-linear filtering methods of image denoising and restoration. The performances and efficiency of the proposed filter have been shown through analysing its superiority over the considered and most accepted advanced filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ahmed F, Das S (2014) Removal of high-density salt-and-pepper noise in images with an iterative adaptive fuzzy filter using alpha-trimmed mean. IEEE Trans Fuzzy Syst 22(5):1352–1358. https://doi.org/10.1109/TFUZZ.2013.2286634

    Article  Google Scholar 

  2. Aiswarya K, Jayaraj V, Ebenezer D (2010) A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos. Second international conference on computer modeling and simulation, 2010. ICCMS ‘10. 4:409–413. https://doi.org/10.1109/ICCMS.2010.310

  3. Astola J, Kuosmanen P (1997) Fundamentals of nonlinear digital filtering, vol 8. CRC press, Boca Raton

    Google Scholar 

  4. Atkinson I, Kamalabadi F, Jones DL (2003) Wavelet-based hyperspectral image estimation.2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477) 2: 743–745. https://doi.org/10.1109/IGARSS.2003.1293903

  5. Balasubramanian S, Kalishwaran S, Muthuraj R, Ebenezer D, Jayaraj V (2009) An efficient non-linear cascade filtering algorithm for removal of high density salt and pepper noise in image and video sequence. 2009 International conference on control, Automation, Communication and Energy Conservation, pp. 1–6

  6. Baumgardner M F, Biehl L L, Landgrebe DA (2015) 220 band AVIRIS hyperspectral image data set: June 12, 1992 Indian pine test site 3. Purdue University Research Repository. https://doi.org/10.4231/R7RX991C

  7. Bioucas-Dias JM, Plaza A, Dobigeon N, Parente M, du Q, Gader P, Chanussot J (2012) Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J Select Topics Appl Earth Observ Remote Sens 5(2):354–379. https://doi.org/10.1109/JSTARS.2012.2194696

    Article  Google Scholar 

  8. Bo F, Li WW, Fu YP, Song CM (2015) An image topic model for image denoising. Neurocomputing 169:119–123. https://doi.org/10.1016/j.neucom.2014.11.094

    Article  Google Scholar 

  9. Buades A, Coll B, Morel JM (2005) A non local algorithm for image denoising. IEEE IntConfComput Vis PattRecog CVPR 2:60–65. https://doi.org/10.1109/CVPR.2005.38

    Article  MATH  Google Scholar 

  10. Buades A, Coll B, Morel JM (2011) Self-similarity-based image denoising. Commun ACM 54(5):109–117. https://doi.org/10.1145/1941487.1941513

    Article  Google Scholar 

  11. Chan RH, Ho CW, Nikolova M (2005) Salt–and–pepper noise removal by median–type noise detectors and detail–preserving regularization. IEEE Trans Image Process 14:1479–1485. https://doi.org/10.1109/TIP.2005.852196

    Article  Google Scholar 

  12. Chang Y, Yan L, Fang H, Luo C (2015) Anisotropic spectral-spatial total variation model for multispectral remote sensing image destriping. IEEE Trans Image Process 24(6):1852–1866. https://doi.org/10.1109/TIP.2015.2404782

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen G, Qian SE (2008) Simultaneous dimensionality reduction and denoising of hyperspectral imagery using bivariate wavelet shrinking and principal component analysis. Can J Remote Sens 34(5):447–454. https://doi.org/10.5589/m08-058

    Article  Google Scholar 

  14. Chen G, Qian SE (2009) Denoising and dimensionality reduction of hyperspectral imagery using wavelet packets, neighbour shrinking and principal component analysis. Int J Remote Sens 30(18):4889–4895. https://doi.org/10.1080/01431160802653724

    Article  Google Scholar 

  15. Chen G, Qian SE (2011) Denoising of hyperspectral imagery using principal component analysis and wavelet shrinkage. IEEE Trans Geosci Remote Sens 49(3):973–980. https://doi.org/10.1109/TGRS.2010.2075937

    Article  Google Scholar 

  16. Chen T, Wu HR (2001) Adaptive impulse detection using center weighted median filters. IEEE Signal Process Lett 8:1–3. https://doi.org/10.1109/97.889633

    Article  Google Scholar 

  17. Chen G, Bui TD, Krzyzak A (2011) Denoising of three-dimensional data cube using bivariate wavelet shrinking. Int J Pattern Recognit Artif Intell 25(3):403–413. https://doi.org/10.1142/S0218001411008725

    Article  MathSciNet  Google Scholar 

  18. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  19. Dabov K, Foi A, Katkovnik V, Egiazarian K (2013) A nonlocal transform-domain filter for volumetric data Denoising and reconstruction. IEEE Trans Image Proc 22(1):119–133. https://doi.org/10.1109/TIP.2012.2210725

    Article  MathSciNet  MATH  Google Scholar 

  20. Das S, Chakravortty S (2021) Efficient entropy-based spatial fuzzy c-means method for spectral unmixing of hyperspectral image. Soft Comput 25:7379–7397. https://doi.org/10.1007/s00500-021-05697-2

    Article  Google Scholar 

  21. Dash A, Sathua SK (2015) High density noise removal by using cascading algorithms. Proc. IEEE 5th Int. Conf. Advanced Comput Commun Tech, pp 96–101. https://doi.org/10.1109/ACCT.2015.100

  22. Dong W, Shi G, Li X (2013) Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process 22(2):700–711. https://doi.org/10.1109/TIP.2012.2221729

    Article  MathSciNet  MATH  Google Scholar 

  23. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  24. Eng HL, Ma KK (2001) Noise adaptive soft-switching median filter. IEEE Trans Image Process 10:242–251. https://doi.org/10.1109/83.902289

    Article  MATH  Google Scholar 

  25. Erkan U, Gokrem L (2018) A new method based on pixel density in salt and pepper noise removal. Turk J Electr Eng ComputSci 26:162–171. https://doi.org/10.3906/elk-1705-256

    Article  Google Scholar 

  26. Esakkirajan S, Veerakumar T, Subramanyam AN, PremChand CH (2011) Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Process Lett 18:287–290. https://doi.org/10.1109/LSP.2011.2122333

    Article  Google Scholar 

  27. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Englewood Cliffs

    Google Scholar 

  28. Guo X, Huang X, Zhang L, Zhang L (2013) Hyperspectral image noise reduction based on rank-1 tensor decomposition. ISPRS J Photogramm Remote Sens 83:50–63. https://doi.org/10.1016/j.isprsjprs.2013.06.001

    Article  Google Scholar 

  29. He W, Zhang H, Zhang L, Shen H (2014) A noise-adjusted iterative randomized singular value decomposition method for hyperspectral image denoising. Proc. 2014 IEEE Geosci. Remote Sens. Symp., Quebec, ON, Canada, pp. 1536–1539. https://doi.org/10.1109/IGARSS.2014.6946731

  30. He W, Zhang H, Zhang L, Shen H (2015) Hyperspectral image denoising via noise-adjusted iterative low-rank matrix approximation. IEEE J Select Topics Appl Earth Observ Remote Sens 8(6):3050–3061. https://doi.org/10.1109/JSTARS.2015.2398433

    Article  Google Scholar 

  31. He W, Zhang H, Zhang L (2017) Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans Geosci Remote Sens 55(7):3909–3921. https://doi.org/10.1109/TGRS.2017.2683719

    Article  Google Scholar 

  32. He W, Zhang H, Shen H, Zhang L (2018) Hyperspectral image Denoising using local low-rank matrix recovery and global spatial–spectral Total variation. IEEE J Select Topics Appl Earth Observ Remote Sens 11(3):713–729. https://doi.org/10.1109/JSTARS.2018.2800701

    Article  Google Scholar 

  33. Hwang H, Haddad RA (1995) Adaptive median filters: new algorithms and results. IEEE Trans Image Process 4(4):499–502. https://doi.org/10.1109/83.370679

    Article  Google Scholar 

  34. ImageProcessingPlace.com - Image Databases (n.d.) http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

  35. Jafar IF, AlNa’mneh RA, Darabkh KA (2013) Efficient improvements on the BDND filtering algorithm for the removal of high-density impulse noise. IEEE Trans Image Process 22(3):1223–1231. https://doi.org/10.1109/TIP.2012.2228496

    Article  MathSciNet  MATH  Google Scholar 

  36. Jayaraj V, Ebenezer D (2010) A switching- based median filtering scheme and algorithm for removal of high density salt and pepper noise in image. EURASIP J Adv Signal Process 2010(01):1. https://doi.org/10.1155/2010/690218

  37. Kamarujjaman MM (2019) 3D unsupervised modified spatial fuzzy c-means method for segmentation of 3D brain MR image. Pattern Anal Applic 22:1561–1571. https://doi.org/10.1007/s10044-019-00806-2

    Article  MathSciNet  Google Scholar 

  38. Kamarujjaman MM, Chakraborty S (2021) A novel decision-based adaptive feedback median filter for high density impulse noise suppression. Multimed Tools Appl 80:299–321. https://doi.org/10.1007/s11042-020-09473-6

    Article  Google Scholar 

  39. Kamarujjaman, MM, Maitra M (2015) An efficient FPGA based de-noising architecture for removal of high density impulse noise in images. IEEE International Conference on Research in Computational Intelligence and Communication Networks. https://doi.org/10.1109/ICRCICN.2015.7434247

  40. Kamarujjaman, CS, Maitra M (2016) An unsupervised modified spatial fuzzy Cmean method for segmentation of brain MR image. International Conference on Advances in Computing, Communications and Informatics pp 125–131. https://doi.org/10.1109/ICACCI.2016.7732035

  41. Kamarujjaman S, Mukherjee M, Maitra M (2014) A new decision-based adaptive filter for removal of high density impulse noise from digital images. Int Conf Device Circuits Commun https://doi.org/10.1109/ICDCCom.2014.7024689

  42. Kandemir C, Kalyoncu C, Toygar O (2015) A weighted mean filter with spatial-bias elimination for impulse noise removal. Digit Signal Process 46:164–174. https://doi.org/10.1016/j.dsp.2015.08.012

    Article  MathSciNet  Google Scholar 

  43. Kuiteing SK, Coluccia G, Barducci A, Barni M, Magli E (2014) Compressive hyperspectral imaging using progressive total variation. 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp. 7794–7798. https://doi.org/10.1109/ICASSP.2014.6855117

  44. Letexier D, Bourennane S (2008) Noise removal from hyperspectral images by multidimensional filtering. IEEE Trans Geosci Remote Sens 46(7):2061–2069. https://doi.org/10.1109/TGRS.2008.916641

    Article  Google Scholar 

  45. Li J, Yuan Q, Shen H, Zhang L (2016) Noise removal from hyperspectral image with joint spectral-spatial distributed sparse representation. IEEE Trans Geosci Remote Sens 54(9):5425–5439. https://doi.org/10.1109/TGRS.2016.2564639

    Article  Google Scholar 

  46. Liu X, Bourennane S, Fossati C (2012) Nonwhite noise reduction in hyperspectral images. IEEE Geosci Remote Sens Lett 9(3):368–372. https://doi.org/10.1109/LGRS.2011.2169041

    Article  Google Scholar 

  47. Ma C, Lv X, Ao J (2019) Multimed Tools Appl 78:1131. https://doi.org/10.1007/s11042-018-6442-2

    Article  Google Scholar 

  48. Mafi M, Rajaei H, Cabrerizo M, Adjouadi M (2018) A robust edge detection approach in the presence of high impulse noise intensity through switching adaptive median and fixed weighted mean filtering. IEEE Trans Image Process 27(11):5475–5490. https://doi.org/10.1109/TIP.2018.2857448

    Article  MathSciNet  Google Scholar 

  49. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration.Proc. IEEE 12th Int. Conf. Comput. Vision 2272–2279. https://doi.org/10.1007/s11042-015-2471-2

  50. MultiSpec- Hyperspectral Images (n.d.) https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

  51. Ng Pei-Eng, Ma Kai-Kuang (2006) A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans Image Process 15(6):1506–1516. https://doi.org/10.1109/TIP.2005.871129

  52. Othman H, Qian SE (2006) Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans Geosci Remote Sens 44(2):397–408. https://doi.org/10.1109/TGRS.2005.860982

    Article  Google Scholar 

  53. Pok G, Liu JC, Nair AS (2003) Selective removal of impulse noise based on homogeneity level information. IEEE Trans Image Process 12:85–92. https://doi.org/10.1109/TIP.2002.804278

    Article  Google Scholar 

  54. Raza MT, Sawant S (2012) High density salt and pepper noise removal through decision based partial trimmed global mean filter. IEEE international conference on engineering (NUiCONE), pp 1–5. https://doi.org/10.1109/NUICONE.2012.6493236.

  55. Remote Sensing Laboratory- Remote Sensing Datasets (n.d.) https://rslab.ut.ac.ir/data

  56. Robin A, Nicholson KC, Mahmood A, Sears M (2015) Estimation of the intrinsic dimension of hyperspectral images: comparison of current methods. IEEE J Select Topics Appl Earth Observ Remote Sens 8(6):2854–2861. https://doi.org/10.1109/JSTARS.2015.2432460

    Article  Google Scholar 

  57. Rodarmel C, Shan J (2002) Principal component analysis for hyperspectral image classification. Surv Land Inf Syst 62

  58. Roy A, Singha J, Devi SS, Laskar RH (2016) Impulse noise removal using SVM classification based fuzzy filter from gray scale images. Signal Process 128:262–273. https://doi.org/10.1016/j.sigpro.2016.04.007

    Article  Google Scholar 

  59. Sendur L, Selesnick IW (2002) Bivariate shrinkage with local variance estimation. IEEE Signal Process Lett 9(12):438–441. https://doi.org/10.1109/LSP.2002.806054

    Article  Google Scholar 

  60. Srinivasan KS, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of highdensity impulse noises. IEEE Signal Process Lett 14:189–192. https://doi.org/10.1109/LSP.2006.884018

    Article  Google Scholar 

  61. Varghese J, Ghouse M, Subash S, Siddappa M, Khan MS, Hussain OB (2014) Efficient adaptive fuzzy-based switching weighted average filter for the restoration of impulse corrupted digital images. IET Image Process 8(4):199–206. https://doi.org/10.1049/iet-ipr.2013.0297

    Article  Google Scholar 

  62. Vasanth K, Manjunath TG, Raj N (2015) A decision based unsymmetrical trimmed modified Winsorized mean filter for the removal of high density salt and pepper noise in images and videos. Procedia Comput Sci 48:29–36. https://doi.org/10.1016/j.procs.2015.06.069

    Article  Google Scholar 

  63. Weebly- Hyperspectral Data Set (n.d.) http://lesun.weebly.com/hyperspectral-data-set.html

  64. Yan M (2013) Restoration of images corrupted by impulse noise and mixed Gaussian impulse noise using blind in painting. SIAM J ImagSci 6:1227–1245. https://doi.org/10.1137/12087178X

    Article  MATH  Google Scholar 

  65. Yuan Q, Zhang L, Shen H (2012) Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans Geosci Remote Sens 50(10):3660–3677. https://doi.org/10.1109/TGRS.2012.2185054

    Article  Google Scholar 

  66. Zhang H (2012) Hyperspectral image denoising with cubic total variation model. ISPRS Ann Photogramm Remote Sens Spat Inf Sci I-7:95–98. https://doi.org/10.5194/isprsannals-I-7-95-2012

    Article  Google Scholar 

  67. Zhang P, Li F (2014) A new adaptive weighted mean filter for removing salt-and pepper noise. IEEE Signal Process Lett 21(10):1280–1283. https://doi.org/10.1109/LSP.2014.2333012

    Article  Google Scholar 

  68. Zhu F (2017) Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey. arXiv:1708.05125

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somdatta Chakravortty.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Chakravortty, S. Spectral-spatial 3D dynamic trimmed median filter for removal of impulse noise in remotely sensed images. Multimed Tools Appl 82, 15945–15982 (2023). https://doi.org/10.1007/s11042-022-13965-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13965-y

Keywords

Navigation