Skip to main content
Log in

A robust reversible watermarking scheme overcomes the misalignment problem of generalized histogram shifting

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

There are a lot of reversible watermarking (RW) methods have been proposed to losslessly embed watermarks. However, the embedding process of reversible watermarks is fragile, i.e., the hiding data can not resist any attacks. To the end, the robust reversible watermarking (RRW) algorithms are proposed, which enable the embedded information can resist incidental alteration. Generalized histogram shifting (GHS) is a mainstream algorithm of RRW, which extends the traditional histogram shifting (HS) by shifting extra space. However, a non-synchronous problem may be generated under some attacks due to the shifting bins are misjudged as embedding bins, which results watermarks are meaningless. In this work, we propose a RRW global embedding scheme to deal with this problem. Specifically, the shifted bins in GHS are further extended to embed data, which ensures that all blocks in the image are embedded information. As a result, the non-synchronous problem can be solved by our method. Experiment results show that the proposed method outperforms some other state of the art works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  Google Scholar 

  2. An L, Gao X, Yuan Y, Tao D, Li X (2011) Lossless data embedding using generalized statistical quantity histogram. IEEE Trans Circ Syst Video Technol 21(8):1061–1070

    Article  Google Scholar 

  3. Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Systems Journal 35(3.4):313–336

    Article  Google Scholar 

  4. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  5. Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15(4):1042–1049

    Article  Google Scholar 

  6. Coltuc D, Chassery J (2007) Very fast watermarking by reversible contrast mapping. IEEE Signal Process Lett 14(4):255–258

    Article  Google Scholar 

  7. Coltuc D, Chassery JM (2007) Distortion-free robust watermarking: a case study. In: Proceedings SPIE 6505, Security, Steganography and Watermarking of Multimedia Contents IX

  8. Coltuc D (2007) Towards distortion-free robust image authentication in Journal of Physics: Conference Series, vol 77

  9. De Vleeschouwer C, Delaigle J. -, Macq B (2003) Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans Multimed 5(1):97–105

    Article  Google Scholar 

  10. Fridrich J, Goljan M, Rui D (2001) Invertible authentication. In: Proceedings of SPIE - the international society for optical engineering 4314

  11. Goljan M, Fridrich JJ, Du R (2001) Distortion-free data embedding for images. Lect Note Comput Sci 2137:27–41

    Article  MATH  Google Scholar 

  12. Hu Y, Lee H, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circ Syst Video Technol 19(2):250–260

    Article  Google Scholar 

  13. Hong W, Chen T-S, Shiu C-W (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82 (11):1833–1842

    Article  Google Scholar 

  14. Hwang J, Kim J, Choi J (2006) A reversible watermarking based on histogram shifting. Lect Note Comput Sci 4283:348–361

    Article  Google Scholar 

  15. Kamstra L, Heijmans HJAM (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14 (12):2082–2090

    Article  Google Scholar 

  16. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo H (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inform Forens Secur 3(3):456–465

    Article  Google Scholar 

  17. Koch E, Zhao J (1995) Towards robust and hidden image copyright labeling. Proc IEEE Workshop Nonlinear Signal 2:452–455

    Google Scholar 

  18. Lee Sk, Suh Yh, Ho Y-s (2006) Reversible image authentication based on watermarking. In: 2006 IEEE international conference on multimedia and expo, pp 1321–1324

  19. Li X, Zhang W, Gui X, Yang B (2015) Efficient reversible data hiding based on multiple histograms modification. IEEE Trans Inform Forens Secur 10 (9):2016–2027

    Article  Google Scholar 

  20. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MATH  Google Scholar 

  21. Ma YJ, Zhu YS, Liu XY (2016) A novel reversible watermarking scheme for relational databases protection based on histogram shifting. J Inform Hiding Multimed Signal Process 7(2):266–276

    Google Scholar 

  22. Ni Z, Shi Y-Q, Ansari N, Wei S (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  23. Ni Z, Shi YQ, Ansari N, Su W, Sun Q, Lin X (2008) Robust lossless image data hiding designed for semi-fragile image authentication. IEEE Trans Circ Syst Video Technol 18(4):497–509

    Article  Google Scholar 

  24. Ou B, Li X, Zhao Y, Ni R, Shi Y (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021

    Article  MATH  Google Scholar 

  25. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  26. Suryavanshi HE, Mishra A, Sahu SK, Mali ML (2014) Wavelet-based watermarking for copy rights protection. In: International conference on information communication and embedded systems (ICICES2014), pp 1–4

  27. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans on Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  28. Thodi DM, Rodriguez JJ (2004) Prediction-error based reversible watermarking. In: International conference on image processing, 2004. ICIP ’04, pp 1549–1552 vol 3

  29. Wang X, Li X, Yang B, Guo Z (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570

    Article  Google Scholar 

  30. Weng S, Pan J-S, Gao X (2012) Reversible watermark combining pre-processing operation and histogram shifting. J Inform Hiding Multimed Signal Process 3:320–326

    Google Scholar 

  31. Xuan G, Chen J, Zhu J, Shi YQ, Ni Zhicheng, Wei S u (2002) Lossless data hiding based on integer wavelet transform. In: 2002 IEEE workshop on multimedia signal processing, pp 312–315

  32. Zeng XT, Ping LD, Pan XZ (2010) A lossless robust data hiding scheme. Pattern Recogn 43:1656–1667

    Article  MATH  Google Scholar 

  33. Zou D, Shi YQ, Ni Z (2004) A semi-fragile lossless digital watermarking scheme based on integer wavelet transform. In: IEEE 6th Workshop on Multimedia Signal Processing, 2004, pp 195–1098

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, X. & Pei, Q. A robust reversible watermarking scheme overcomes the misalignment problem of generalized histogram shifting. Multimed Tools Appl 82, 7207–7227 (2023). https://doi.org/10.1007/s11042-022-13611-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13611-7

Keywords

Navigation