Skip to main content

Efficient image retrieval system for textural images using fuzzy class membership


The article describes enhancements in retrieval performance of content-based image retrieval (CBIR) system using the fuzzy class membership-based retrieval (CMR) framework. The CMR approach explores the CBIR as a classifier-based retrieval problem using a neural network classifier, accompanied by a simple distance-based retrieval method. The fuzzy class membership-based approach is known to enhance the retrieval performance along with slight variation without any constraint on the feature set to be used. Despite that, its efficacy is not known for color and multi-band textures. We have proposed several advancements in a fuzzy class membership-based retrieval framework for improved retrieval. The main contributions are the simplification of vital threshold selection process and effective use of membership values to encourage the use of appropriate classifiers, investigation of the role of the cost function in neural network and distance weighting functions for improved retrieval, a way to adapt a new classifier in fuzzy class membership-based retrieval framework in place of neural network. Experimental analysis of all proposed advancements are evaluated using benchmark gray-scale texture databases viz. three versions of Broadtz and Outex database. The p-value analysis is carried out to check if the improvements are statistically significant. The proposed method is further tested with the Describable texture database (DTD) and Multi-band texture (MBT) database to check its applicability on color textures. The comparison with recent methods using gray-scale image databases viz. AT&T face database, MIT VisTex database, Broadatz texture database, and natural-color image databases viz. Corel-1K and Corel-10K showcase the efficacy of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Abdelmounaime S, He D-C (2013) New brodatz-based image databases for grayscale color and multiband texture analysis. ISRN Machine Vision 2013

  2. Alrahhal M, Supreethi KP (2019) Supervised machine learning techniques. In: 2019 Amity International Conference on Artificial Intelligence (AICAI), pp 118–124. IEEE

  3. Arunkumar N, Ranjith AR (2020) Cbir systems: Techniques and challenges. In: 2020 International conference on communication and signal processing (ICCSP), pp 0141–0146

  4. Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2018) Local neighborhood intensity pattern–a new texture feature descriptor for image retrieval. Expert Syst Appl 113:100–115

    Article  Google Scholar 

  5. Bedi AK, Sunkaria RK (2020) Local tetra-directional pattern–a new texture descriptor for content-based image retrieval. Pattern Recognit Image Anal 30(4):578–592

    Article  Google Scholar 

  6. Bella MIT, Vasuki A (2019) An efficient image retrieval framework using fused information feature. Comput & Electric Eng 75:46–60

    Article  Google Scholar 

  7. Benyl RD, Seldev CC (2020) Novel real time content based medical image retrieval scheme with gwo-svm. Multimed Tools Appl 79(23-24):17227–17243

    Article  Google Scholar 

  8. Bhardwaj S, Pandove G, Dahiya PK (2021) An effective fusion of a color and texture descriptor for an image retrieval system: An exploratory analysis. In: Mobile Radio Communications and 5G Networks, pp 667–678. Springer

  9. Bhatt HB, Mankodia AP (2021) A comprehensive review on content-based image retrieval system: Features and challenges. In: Ketan Kotecha, Vincenzo Piuri, Hetalkumar N. Shah, and Rajan Patel, editors, Data science and intelligent applications, pp 63–74, Singapore. Springer Singapore

  10. Bhunia AK, Bhattacharyya A, Banerjee P, Roy PP, Murala S (2019) A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern. Pattern Analysis and Applications, pp 1–21

  11. Bhunia AK, Perla SRK, Mukherjee P, Das A, Roy PP (2019) Texture synthesis guided deep hashing for texture image retrieval. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp 609–618. IEEE

  12. Brodatz P (1966) Textures: a photographic album for artists and designers Dover Pubns

  13. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Intell Syst Technol 2:27:1–27:27. Software available at

    Article  Google Scholar 

  14. Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A (2014) Describing textures in the wild. In: Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)

  15. Dash JK, Mukhopadhyay S, Gupta RD (2015) Content-based image retrieval using fuzzy class membership and rules based on classifier confidence. IET Image Process 9(9):836–848

    Article  Google Scholar 

  16. Desai P, Pujari J, Sujatha C, Kamble A, Kambli A (2021) Hybrid approach for content-based image retrieval using vgg16 layered architecture and svm: an application of deep learning. SN Comput Sci 2(3):1–9

    Google Scholar 

  17. Desai P, Pujari J, Sujatha C et al (2021) Impact of multi-feature extraction on image retrieval and classification using machine learning technique. SN Computer Science 2(3):1–9

    Google Scholar 

  18. Dubey SR (2021) A decade survey of content based image retrieval using deep learning. IEEE Transactions on Circuits and Systems for Video Technology

  19. Duda RO, Hart PE, Stork DG (2000) Pattern classification (2Nd edition) Wiley-Interscience

  20. Faloutsos C, Barber R, Flickner M, Hafner J, Niblack W, Petkovic D, Equitz W (1994) Efficient and effective querying by image content. J Intell Inf Syst 3(3-4):231–262

    Article  Google Scholar 

  21. Friedman JH (1996) Another approach to polychotomous classification. Technical report, Department of Statistics Stanford University

  22. Garg M, Dhiman G (2021) A novel content-based image retrieval approach for classification using glcm features and texture fused lbp variants. Neural Comput & Applic 33:1311–1328

    Article  Google Scholar 

  23. Ghahremani M, Ghadiri H, Hamghalam M (2021) Local features integration for content-based image retrieval based on color, texture, and shape. Multimedia Tools and Applications, pp 1–19

  24. Ghose S, Das A, Bhunia AK, Roy PP (2020) Fractional local neighborhood intensity pattern for image retrieval using genetic algorithm. Multimed Tools Appl 79(25):18527–18552

    Article  Google Scholar 

  25. Golik P, Doetsch P, Ney H (2013) Cross-entropy vs. squared error training: a theoretical and experimental comparison. In: INTERSPEECH, pp 1756–1760

  26. Gupta A, Jain R (1997) Visual information retrieval. Commun ACM 40(5):70–79

    Article  Google Scholar 

  27. Gupta S, Roy PP, Dogra DP, Kim B-G (2020) Retrieval of colour and texture images using local directional peak valley binary pattern. Pattern Anal Applic 23(4):1569–1585

    Article  Google Scholar 

  28. Han J, Ma K-K (2007) Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vis Comput 25(9):1474–1481

    Article  Google Scholar 

  29. Hastie T, Tibshirani R (1998) Classification by pairwise coupling. In: Advances in neural information processing systems, pp 507–513

  30. Hatibaruah R, Nath VK, Hazarika D (2019) Texture image retrieval using multiple filters and decoded sparse local binary pattern. In: International Conference on Pattern Recognition and Machine Intelligence, pp 541–550. Springer

  31. Huang K, Jiang H, Zhang X-Y (2017) Field support vector machines. IEEE Trans Emerg Top Comput Intell 1(6):454–463

    Article  Google Scholar 

  32. Hussain S, Zia MA, Arshad W (2021) Additive deep feature optimization for semantic image retrieval. Expert Syst Appl 170:114545

    Article  Google Scholar 

  33. Jatindra KD, Kale M, Mukhopadhyay S, Khandelwal N, Prabhakar N, Garg M, Kalra N (2017) An experimental study of interstitial lung tissue classification in hrct images using ann and role of cost functions. In: Medical Imaging 2017: Computer-Aided Diagnosis, vol 10134, pp 101343U. International Society for Optics and Photonics

  34. Kanaparthi SK, Raju USN, Shanmukhi P, Khyathi Aneesha G, Rahman MEU (2019) Image retrieval by integrating global correlation of color and intensity histograms with local texture features. Multimedia Tools Applications, pp 1–37

  35. Kas M, El-merabet Y, Ruichek Y, Messoussi R (2020) A comprehensive comparative study of handcrafted methods for face recognition lbp-like and non lbp operators. Multimed Tools Appl 79(1):375–413

    Article  Google Scholar 

  36. Khan UA, Javed A, Ashraf R (2021) An effective hybrid framework for content based image retrieval (cbir). Multimedia Tools and Applications, pp 1–27

  37. Kumar S, Pradhan J, Pal AK, Hafizul Islam SK, Khan MK (2021) Radiological image retrieval technique using multi-resolution texture and shape features. Multimedia Tools and Applications, pp 1–28

  38. Lin H-T, Lin C-J, Weng RC (2007) A note on platts probabilistic outputs for support vector machines. Mach Learn 68(3):267–276

    Article  Google Scholar 

  39. Liu GH, Yang JY, Li Z (2015) Content-based image retrieval using computational visual attention model. Pattern Recognit 48(8):2554–2566

    Article  Google Scholar 

  40. Liu Y, Zhang S, Wang F, Lim K, Liu Q, Lei Y, Gong Y, Lu J (2019) Wavelet-energy-weighted local binary pattern analysis for tire tread pattern classification. In: 2019 3rd International conference on imaging, signal processing and communication (ICISPC), pp 90–95

  41. Luts J, Ojeda F, Van de Plas R, De Moor B, Van Huffel S, Suykens JAK (2010) A tutorial on support vector machine-based methods for classification problems in chemometrics. Anal Chim Acta 665(2):129–145

  42. Ma WY, Manjunath BS (1997) Netra: a toolbox for navigating large image databases. In: Proceedings of International conference on image processing, vol 1, vol 1, pp 568–571

  43. Medjeded M, Mahmoudi S, Chikh M (2014) Texture and classifier based medical images retrieval. J Med Imaging Health Inform 4(1):43–48

    Article  Google Scholar 

  44. Mit vision and modeling group (1987) cambridge, vision texture, available online: Accessed 2014

  45. Mukhopadhyay S, Dash JK, Gupta RD (2013) Content-based texture image retrieval using fuzzy class membership. Pattern Recogn Lett 34(6):646–654

    Article  Google Scholar 

  46. Naghashi V (2018) Co-occurrence of adjacent sparse local ternary patterns: a feature descriptor for texture and face image retrieval. Optik 157:877–889

    Article  Google Scholar 

  47. Ojala T, Maenpaa T, Pietikainen M, Viertola J, Kyllonen J, Huovinen S (2002) Outex-new framework for empirical evaluation of texture analysis algorithms. In: Pattern recognition proceedings. 16th international conference on, vol 1, pp 701–706, IEEE, p 2002

  48. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, (7). pp 971–987

  49. Pentland A, Picard RW, Sclaroff S (1996) Photobook: Content-based manipulation of image databases. Int J Comput Vis 18(3):233–254

    Article  Google Scholar 

  50. Platt J et al (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 10(3):61–74

    Google Scholar 

  51. Raghuwanshi G, Tyagi V (2016) Texture image retrieval using adaptive tetrolet transforms. Digit Signal Process 48:50–57

    MathSciNet  Article  Google Scholar 

  52. Raghuwanshi G, Tyagi V (2021) Texture image retrieval using hybrid directional extrema pattern. Multimed Tools Appl 80(2):2295–2317

    Article  Google Scholar 

  53. Shao Z, Zhou W, Deng X, Zhang M, Cheng Q (2020) Multilabel remote sensing image retrieval based on fully convolutional network. IEEE J Sel Top Appl Earth Obs Remote Sens 13:318–328

    Article  Google Scholar 

  54. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

    Article  Google Scholar 

  55. Smith JR, Chang S-F (1997) Visualseek: a fully automated content-based image query system. In: Proceedings of the fourth ACM international conference on Multimedia, pp 87–98

  56. The at&t database of faces (2002) available online: Accessed 2014

  57. University of sourthern california (2011) signal and image processing institute rotated textures

  58. Valente AC, Perez FVM, Megeto GAS, Cascone MH, Gomes O, Paula TS, Lin Q (2019) Comparison of texture retrieval techniques using deep convolutional features. Electron Imaging 2019(8):406–1

    Google Scholar 

  59. Venables WN, Ripley BD (2013) Modern applied statistics with s-PLUS Springer Science & Business Media

  60. Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit Signal Process 51:62–72

    MathSciNet  Article  Google Scholar 

  61. Verma Manisha, Raman Balasubramanian (2018) Local neighborhood difference pattern: a new feature descriptor for natural and texture image retrieval. Multimed Tools Appl 77(10):11843–11866

    Article  Google Scholar 

  62. Vimina ER, Divya MO (2020) Maximal multi-channel local binary pattern with colour information for cbir. Multimed Tools Appl 79(35):25357–25377

    Article  Google Scholar 

  63. Wang JZ, Li J, Wiederhold G (2001) Simplicity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23 (9):947–963

    Article  Google Scholar 

  64. Wang H, Qu H (2020) Texture image retrieval based on statistical feature fusion. In: Zhigeng Pan and Xun Wang, editors, Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), vol 11373, pp 254–261. International Society for Optics and Photonics, SPIE

  65. Wang H, Qu H, Xu J, Wang J, Wei Y, Zhang Z (2020) Combining statistical features and local pattern features for texture image retrieval. IEEE Access 8:222611–222624

    Article  Google Scholar 

  66. Wu T-F, Lin C-J, Weng RC (2004) Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5(Aug):975–1005

    MathSciNet  MATH  Google Scholar 

  67. Yang T, Shi G, Yang N, Wang L (2017) Combining multiple feature for texture image classification. In: 2017 10th International congress on image and signal processing, bioMedical engineering and informatics (CISP-BMEI), pp 1–5. IEEE

  68. Zhai H, Lai S, Jin H, Qian X, Mei T (2020) Deep transfer hashing for image retrieval. IEEE Trans Circuits Syst Video Technol 31(2):742–753

    Article  Google Scholar 

  69. Zhang Z, Zou Q, Lin Y, Chen L, Wang S (2020) Improved deep hashing with soft pairwise similarity for multi-label image retrieval. IEEE Trans Multimed 22(2):540–553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sudipta Mukhopadhyay.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kale, M., Dash, J. & Mukhopadhyay, S. Efficient image retrieval system for textural images using fuzzy class membership. Multimed Tools Appl (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Fuzzy class membership
  • Content based image retrieval
  • Texture retrieval
  • Brodatz
  • Multiband texture (MBT)
  • Describable texture database (DTD)
  • Corel-10K