Skip to main content

Advertisement

Log in

A review on self-adaptation approaches and techniques in medical image denoising algorithms

  • 1218: Engineering Tools and Applications in Medical Imaging
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Noise is a definite degeneration of medical images that interferes with the diagnostic process in clinical medicine. Although many denoising algorithms have been developed to improve the visual quality of medical images, failure to noise adaptation has been identified as a critical limitation of many existing denoising algorithms. Therefore, the objective of this study is to conduct an in-depth review to investigate and classify the various self-adaptive approaches and techniques implemented in recent medical image denoising applications. The articles published from the year 2015 have been retrieved from the web of science core collection database focusing on four medical imaging modalities, such as radiography, magnetic resonance imaging, computed tomography, and ultrasound. The analysis of the applications has emphasized the unique algorithmic components used to achieve the self-adaptability in detailed. Moreover, the strengths and weaknesses of those applications have been reviewed according to the various adaptive denoising approaches. Finally, this review highlights the limitations of existing adaptive denoising algorithms and open research directions for further studies of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

ML:

Machine Learning

CT:

Computed Tomography

MRI:

Magnetic Resonance Imaging

US:

Ultrasonography

ANLM:

Adaptive Non-local Means

NLM:

Non-local Means

BM3D:

Block Matching Three Dimention

LDCT:

Low-dose CT

LRA:

Low Rank Approximation

SVD:

Singular Value Decomposition

TV:

Total Variation

ADF:

Anisotropic Diffusion Filtering

AMM:

Adaptive Mathematical Morphology

PCA:

Principle Component Analysis

LMMSE:

Linear Minimum Mean Square Error

MLE:

Maximum Likelihood Estimation

EM:

Expectation Maximization

MRF:

Markov Random Field

MAP:

Maximum a Posterior

DWT:

Discrete Wavelet Transform

SURE:

Stein’s Unbiased Risk Estimator

ANN:

Artificial Neural Network

FLANN:

Function Link Artificial Neural Network

CNN:

Convolutional Neural Networks

ResNet:

Residual CNN

GAN:

Generative Adversarial Networks

References

  1. Ai D, Yang J, Fan J, Cong W, Wang Y (2015) Adaptive tensor-based principal component analysis for low-dose CT image denoising. PLoS ONE 10(5):e0126914. https://doi.org/10.1371/journal.pone.0126914

    Article  Google Scholar 

  2. Aja-Fernández S, Alberola-López C, Westin C-F(2008) Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans Image Process 17(8):1383–1398

    Article  MathSciNet  Google Scholar 

  3. Aja-Fernández S, Pie¸ciak T, Vegas-Sánchez-Ferrero G (2015) Spatially variant noise estimation in MRI: A homomorphic approach. Med Image Anal 20(1):184–197. https://doi.org/10.1016/j.media.2014.11.005

    Article  Google Scholar 

  4. Akdemir Akar S (2016) Determination of optimal parameters for bilateral filter in brain MR image denoising. Appl Soft Comput 43:87–96. https://doi.org/10.1016/j.asoc.2016.02.043

    Article  Google Scholar 

  5. Alkinani MH, El-Sakka MR (2017)Patch-based models and algorithms for image denoising: a comparative review between patch-based images denoising methods for additive noise reduction. EURASIP J Image Video Process 2017(1):58. https://doi.org/10.1186/s13640-017-0203-4

    Article  Google Scholar 

  6. Arora S, Hanmandlu M, Gupta G (2018) Filtering impulse noise in medical images using information sets. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.06.002

    Article  Google Scholar 

  7. Baselice F, Ferraioli G, Pascazio VJBEO (2017) A 3D MRI denoising algorithm based on Bayesian theory. Biomed Eng Online 16(1):25. https://doi.org/10.1186/s12938-017-0319-x

    Article  Google Scholar 

  8. Baselice F, Ferraioli G, Ambrosanio M, Pascazio V, Schirinzi G (2018) Enhanced wiener filter for ultrasound image restoration. Comput Methods Program Biomed 153:71–81. https://doi.org/10.1016/j.cmpb.2017.10.006

    Article  Google Scholar 

  9. Bhujle HV, Vadavadagi BH (2019) NLM based magnetic resonance image denoising – A review. Biomed Signal Process Control 47:252–261. https://doi.org/10.1016/j.bspc.2018.08.031

    Article  Google Scholar 

  10. Buades A, Coll B, Morel J-M(2005) A review of image denoising algorithms, with a new one. Multiscale Model and Simul 4(2):490–530. https://doi.org/10.1137/040616024

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang YN, Chang HH (2015) Automatic brain MR image denoising based on texture feature-based artificial neural networks. Bio-Med Mater Eng 26:S1275–S1282. https://doi.org/10.3233/bme-151425

    Article  Google Scholar 

  12. Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G (2017)Low-Dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 36(12):2524–2535. https://doi.org/10.1109/TMI.2017.2715284

    Article  Google Scholar 

  13. Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G (2017)Low-dose CT via convolutional neural network. Biomed Opt Express 8(2):679–694. https://doi.org/10.1364/BOE.8.000679

    Article  Google Scholar 

  14. Chi J, Wu C, Yu X, Ji P, Chu H (2020) Single Low-Dose CT image denoising using a generative adversarial network with modified U-net generator and multi-level discriminator. IEEE Access 8:133470–133487. https://doi.org/10.1109/ACCESS.2020.3006512

    Article  Google Scholar 

  15. Chinnathambi V, Sankaralingam E, Thangaraj V, Padma SJIIP (2018) Despeckling of ultrasound images using directionally decimated wavelet packets with adaptive clustering. IET Image Process 13(1):206–215. https://doi.org/10.1049/iet-ipr.2018.5011

    Article  Google Scholar 

  16. Choi K, Lim JS, Kim SK (2020) StatNet: Statistical image restoration for low-dose CT using deep learning. IEEE J Sel Top Signal Process 14(6):1137–1150. https://doi.org/10.1109/jstsp.2020.2998413

    Article  Google Scholar 

  17. Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial networks: An overview. IEEE Signal Process Mag 35(1):53–65

    Article  Google Scholar 

  18. Dabov K, Foi A, Egiazarian K (2007) Video denoising by sparse 3D transform-domain collaborative filtering. In: 2007 15th Eur Signal Process Conf, Poznan, Poland, 2015. IEEE, pp 145–149

  19. Das P, Pal C, Chakrabarti A, Acharyya A, Basu S (2020) Adaptive denoising of 3D volumetric MR images using local variance based estimator. Biomed Signal Process Control 59:101901. https://doi.org/10.1016/j.bspc.2020.101901

    Article  Google Scholar 

  20. Diwakar M, Kumar M (2018) A review on CT image noise and its denoising. Biomed Signal Process Control 42:73–88. https://doi.org/10.1016/j.bspc.2018.01.010

    Article  Google Scholar 

  21. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3):425–455. https://doi.org/10.1093/biomet/81.3.425

    Article  MathSciNet  MATH  Google Scholar 

  22. Dorini LB, Leite NJ (2009) Multiscale methods for image processing: The wavelet and the scale-space approaches. In: Tutor of the XXII Braz Symp Comput Graph and Image Process, Rio de Janeiro, Brazil, 11–14, 2009. IEEE, pp31–44. https://doi.org/10.1109/SIBGRAPI-Tutorials.2009.11

  23. Du W, Chen H, Wu Z, Sun H, Liao P, Zhang Y (2017) Stacked competitive networks for noise reduction in low-dose CT. PLoS ONE 12(12):e0190069. https://doi.org/10.1371/journal.pone.0190069

    Article  Google Scholar 

  24. Du W, Chen H, Liao P, Yang H, Wang G, Zhang Y (2019) Visual attention network for low-dose CT. IEEE Signal Process Lett 26(8):1152–1156. https://doi.org/10.1109/LSP.2019.2922851

    Article  Google Scholar 

  25. Elyasi I, Pourmina MA (2016) Reduction of speckle noise ultrasound images based on TV regularization and modified bayes shrink techniques. Optik 127(24):11732–11744. https://doi.org/10.1016/j.ijleo.2016.09.054

    Article  Google Scholar 

  26. Fan F, Shan H, Kalra MK, Singh R, Qian G, Getzin M, Teng Y, Hahn J, Wang G (2020) Quadratic Autoencoder (Q-AE) for low-dose CT denoising. IEEE Trans Med Imaging 39(6):2035–2050. https://doi.org/10.1109/TMI.2019.2963248

    Article  Google Scholar 

  27. Fu Y, Dong W (2016) 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing 195:30–39. https://doi.org/10.1016/j.neucom.2015.09.125

    Article  Google Scholar 

  28. Fu XW, Wang Y, Chen L, Dai Y (2015)Quantum-inspired hybrid medical ultrasound images despeckling method. Electron Lett 51(4):321–322. https://doi.org/10.1049/el.2014.3742

    Article  Google Scholar 

  29. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI 6(6):721–741. https://doi.org/10.1109/TPAMI.1984.4767596

    Article  MATH  Google Scholar 

  30. Golshan HM, Hasanzadeh RPR (2015) An optimized LMMSE based method for 3D MRI denoising. IEEE/ACM Trans Comput Biol Bioinform 12(4):861–870. https://doi.org/10.1109/TCBB.2014.2344675

    Article  Google Scholar 

  31. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Advances in neural information processing systems, Montreal, Canada, December 08–13 2014. MIT Press, Cambridge, pp 2672–2680

    Google Scholar 

  32. Gu J, Ye JC (2021)AdaIN-based tunable cycleGAN for efficient unsupervised Low-Dose CT denoising. IEEE Trans Comp Imaging 7:73–85. https://doi.org/10.1109/TCI.2021.3050266

    Article  Google Scholar 

  33. Gupta D, Anand RS, Tyagi B (2015) Speckle filtering of ultrasound images using a modified non-linear diffusion model in non-subsampled shearlet domain. IET Image Process 9(2):107–117. https://doi.org/10.1049/iet-ipr.2014.0330

    Article  Google Scholar 

  34. Hashemi S, Paul NS, Beheshti S, Cobbold RSC (2015) Adaptively tuned iterative low dose CT image denoising. Comput Math Method Med 12. .https://doi.org/10.1155/2015/638568

  35. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conf on Comput Vis and Pattern Recognit, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  36. Heydari M, Karami M-R, Babakhani A (2016) A new adaptive coupled diffusion PDE for MRI rician noise. Signal Image Video Process 10(7):1211–1218. https://doi.org/10.1007/s11760-016-0878-5

    Article  Google Scholar 

  37. Hu K, Cheng Q, Gao X (2016)Wavelet-domain TI wiener-like filtering for complex MR data denoising. Magn Reson Imaging 34(8):1128–1140. https://doi.org/10.1016/j.mri.2016.05.011

    Article  Google Scholar 

  38. Hu K, Cheng Q, Li B, Gao X (2018) The complex data denoising in MR images based on the directional extension for the undecimated wavelet transform. Biomed Signal Process and Control 39:336–350. https://doi.org/10.1016/j.bspc.2017.08.014

    Article  Google Scholar 

  39. Hu Z, Jiang C, Sun F, Zhang Q, Ge Y, Yang Y, Liu X, Zheng H, Liang D (2019) Artifact correction in low-dose dental CT imaging using wasserstein generative adversarial networks. Med Phys 46(4):1686–1696. https://doi.org/10.1002/mp.13415

    Article  Google Scholar 

  40. Huang Z, Zhang Y, Li Q, Zhang T, Sang N (2018) Spatially adaptive denoising for X-ray cardiovascular angiogram images. Biomed Signal Process Control 40:131–139. https://doi.org/10.1016/j.bspc.2017.09.019

    Article  Google Scholar 

  41. Huang S, Zhou P, Shi H, Sun Y, Wan S (2019) Image speckle noise denoising by a multi-layer fusion enhancement method based on block matching and 3D filtering. Imaging Sci J 67(4):224–235. https://doi.org/10.1080/13682199.2019.1612589

    Article  Google Scholar 

  42. Irrera P, Bloch I, Delplanque M (2016) A flexible patch based approach for combined denoising and contrast enhancement of digital X-ray images. Med Image Anal 28:33–45. https://doi.org/10.1016/j.media.2015.11.002

    Article  Google Scholar 

  43. Jai Jaganath Babu J, Florence Sudha G (2016) Adaptive speckle reduction in ultrasound images using fuzzy logic on coefficient of variation. Biomed Signal Process Control 23:93–103. https://doi.org/10.1016/j.bspc.2015.08.001

    Article  Google Scholar 

  44. Jia L, Zhang Q, Shang Y, Wang Y, Liu Y, Wang N, Gui Z, Yang G (2018) Denoising for low-dose CT image by discriminative weighted nuclear norm minimization. IEEE Access 6:46179–46193. https://doi.org/10.1109/ACCESS.2018.2862403

    Article  Google Scholar 

  45. Jiang D, Dou W, Vosters L, Xu X, Sun Y, Tan T (2018) Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network. Jpn J Radiol 36(9):566–574. https://doi.org/10.1007/s11604-018-0758-8

    Article  Google Scholar 

  46. Joel T, Sivakumar R (2018) An extensive review on despeckling of medical ultrasound images using various transformation techniques. Appl Acoust 138:18–27. https://doi.org/10.1016/j.apacoust.2018.03.023

    Article  Google Scholar 

  47. Joseph J, Periyasamy R (2018) An image driven bilateral filter with adaptive range and spatial parameters for denoising magnetic resonance images. Comput Electr Eng 69:782–795. https://doi.org/10.1016/j.compeleceng.2018.02.033

    Article  Google Scholar 

  48. Kala R, Deepa P (2019) Adaptive fuzzy hexagonal bilateral filter for brain MRI denoising. Multimed Tools Appl 79:15513–15530. https://doi.org/10.1007/s11042-019-7459-x

    Article  Google Scholar 

  49. Kang M, Kang M, Jung M (2015) Nonconvex higher-order regularization based Rician noise removal with spatially adaptive parameters. J Vis Commun Image Represent 32:180–193. https://doi.org/10.1016/j.jvcir.2015.08.006

    Article  Google Scholar 

  50. Kang E, Min J, Ye JC (2017) A deep convolutional neural network using directional wavelets for low-dose X‐ray CT reconstruction. Med Phys 44(10):e360–e375. https://doi.org/10.1002/mp.12344

    Article  Google Scholar 

  51. Kang E, Chang W, Yoo J, Ye JC (2018) Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 37(6):1358–1369. https://doi.org/10.1109/TMI.2018.2823756

    Article  Google Scholar 

  52. Kang E, Koo HJ, Yang DH, Seo JB, Ye JC (2019)Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 46(2):550–562. https://doi.org/10.1002/mp.13284

    Article  Google Scholar 

  53. Kaur R, Juneja M, Mandal AK (2018) A comprehensive review of denoising techniques for abdominal CT images. Multimed Tools Appl 77(17):22735–22770. https://doi.org/10.1007/s11042-017-5500-5

    Article  Google Scholar 

  54. Kaur P, Singh G, Kaur P (2018) A review of denoising medical images using machine learning approaches. Curr Med Imaging Rev 14(5):675–685. https://doi.org/10.2174/1573405613666170428154156

    Article  Google Scholar 

  55. Khaleel HS, Mohd Sagheer SV, Baburaj M, George SN (2018) Denoising of rician corrupted 3D magnetic resonance images using tensor-SVD. Biomed Signal Process Control 44:82–95. https://doi.org/10.1016/j.bspc.2018.04.004

    Article  Google Scholar 

  56. Kumar A (2015) Nonlocal means image denoising using orthogonal moments. Appl Opt 54(27):8156–8165. https://doi.org/10.1364/ao.54.008156

    Article  Google Scholar 

  57. Kumar M, Mishra S (2017) Teaching learning based optimization-functional link artificial neural network filter for mixed noise reduction from magnetic resonance image. Bio-Med Mater Eng 28(6):643–654. https://doi.org/10.1002/mp.13284

    Article  Google Scholar 

  58. Kumar M, Mishra SK (2018) Jaya based functional link multilayer perceptron adaptive filter for Poisson noise suppression from X-ray images. Multimed Tools Appl 77(18):24405–24425. https://doi.org/10.1007/s11042-017-5592-y

    Article  Google Scholar 

  59. Kumar PK, Darshan P, Kumar S, Ravindra R, Rajan J, Saba L, Suri JS (2015) Magnetic resonance image denoising using nonlocal maximum likelihood paradigm in DCT-framework. Int J Imaging Syst Technol 25(3):256–264. https://doi.org/10.1002/ima.22142

    Article  Google Scholar 

  60. Kwon K, Kim M-S, Shin B-S(2016) A fast 3D adaptive bilateral filter for ultrasound volume visualization. Comput Methods Program Biomed 133:25–34. https://doi.org/10.1016/j.cmpb.2016.05.008

    Article  Google Scholar 

  61. Lee JSJ, Budak PV, Lin CR, Haralick RM (1988) Adaptive image processing techniques, vol 0848. SPIE, Cambridge. https://doi.org/10.1117/12.942745

    Book  Google Scholar 

  62. Lee MS, Park SW, Lee SY, Kang MG (2017)Motion-adaptive 3D nonlocal means filter based on stochastic distance for low-dose X-ray fluoroscopy. Biomed Signal Process Control 38:74–85. https://doi.org/10.1016/j.bspc.2017.05.001

    Article  Google Scholar 

  63. Lee J-G, Jun S, Cho Y-W, Lee H, Kim GB, Seo JB, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570–584. https://doi.org/10.3348/kjr.2017.18.4.570

    Article  Google Scholar 

  64. Lerallut R, Decenciere E, Meyer F (2007) Image filtering using morphological amoebas. Image Vis Comput 25(4):395–404

    Article  Google Scholar 

  65. Li B, Xie W (2015) Adaptive fractional differential approach and its application to medical image enhancement. Comp Electr Eng F 45:324–335. https://doi.org/10.1016/j.compeleceng.2015.02.013

    Article  Google Scholar 

  66. Li M, Hsu W, Xie X, Cong J, Gao W (2020) SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans Med Imaging 39(7):2289–2301. https://doi.org/10.1109/TMI.2020.2968472

    Article  Google Scholar 

  67. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  68. Liu Y, Zhang Y (2018)Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing 284:80–89. https://doi.org/10.1016/j.neucom.2018.01.015

    Article  Google Scholar 

  69. Liu C, Gao CB, Yu X (2015) A MRI denoising method based on 3D nonlocal means and multidimensional PCA. Comput Math Method Med 2015:11. https://doi.org/10.1155/2015/232389

  70. Lu C-T, Chen M-Y, Shen J-H, Wang L-L, Hsu C-C(2018) Removal of salt-and-pepper noise for X-ray bio-images using pixel-variation gain factors. Comput Electr Eng 71:862–876. https://doi.org/10.1016/j.compeleceng.2017.08.012

    Article  Google Scholar 

  71. Lv H, Wang R (2019) Denoising 3D magnetic resonance images based on low-rank tensor approximation with adaptive multirank estimation. IEEE Access 7:85995–86003. https://doi.org/10.1109/ACCESS.2019.2924907

    Article  Google Scholar 

  72. Ma Y, Wei B, Feng P, He P, Guo X, Wang G (2020)Low-Dose CT image denoising using a Generative Adversarial Network with a hybrid loss function for noise learning. IEEE Access 8:67519–67529. https://doi.org/10.1109/ACCESS.2020.2986388

    Article  Google Scholar 

  73. Manjón JV, Coupé P, Buades A (2015) MRI noise estimation and denoising using non-local PCA. Med Image Anal 22(1):35–47. https://doi.org/10.1016/j.media.2015.01.004

    Article  Google Scholar 

  74. Mao X, Shen C, Yang Y-B(2016) Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Adv Neural Inf Process Syst, pp 2802–2810

  75. Mao X, Li Q, Xie H, Lau RY, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp 2794–2802. https://doi.org/10.1109/ICCV.2017.304

  76. Martin-Fernandez M, Villullas S (2015) The EM method in a probabilistic wavelet-based MRI denoising. Comput Math Method Med 21. doi:https://doi.org/10.1155/2015/182659

  77. Mishra D, Chaudhury S, Sarkar M, Soin AS (2018) Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process Lett 25(9):1349–1353. https://doi.org/10.1109/LSP.2018.2858147

    Article  Google Scholar 

  78. Mohd Sagheer SV, George SN (2017) Ultrasound image despeckling using low rank matrix approximation approach. Biomed Signal Process Control 38:236–249. https://doi.org/10.1016/j.bspc.2017.06.011

    Article  Google Scholar 

  79. Mohd Sagheer SV, George SN (2019) Denoising of low-dose CT images via low-rank tensor modeling and total variation regularization. Artif Intell Medicine 94:1–17. https://doi.org/10.1016/j.artmed.2018.12.006

    Article  Google Scholar 

  80. Mohd Sagheer SV, George SN (2020) A review on medical image denoising algorithms. Biomed Signal Process Control 61:102036. https://doi.org/10.1016/j.bspc.2020.102036

    Article  Google Scholar 

  81. Park HS, Baek J, You SK, Choi JK, Seo JK (2019) Unpaired image denoising using a generative adversarial network in X-Ray CT. IEEE Access 7:110414–110425. https://doi.org/10.1109/ACCESS.2019.2934178

    Article  Google Scholar 

  82. Periyasamy N, Ramasamy A (2018) A novel edge preserving improved adaptive wavelet filter (EPIAWF) for speckle removal in ultrasound images. Curr Med Imaging Rev 14(4):521–532. https://doi.org/10.2174/1573405613666170118102821

    Article  Google Scholar 

  83. Perona P, Malik J (1990)Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639. https://doi.org/10.1109/34.56205

    Article  Google Scholar 

  84. Phophalia A, Mitra SK (2015) Rough set based bilateral filter design for denoising brain MR images. Appl Soft Comput 33:1–14. https://doi.org/10.1016/j.asoc.2015.04.005

    Article  Google Scholar 

  85. Prasath VB (2017) Quantum noise removal in X-Ray images with adaptive total variation regularization. J Informatica 28(3):505–515. https://doi.org/10.15388/Informatica.2017.141

    Article  Google Scholar 

  86. Rajan J, Poot D, Juntu J, Sijbers J (2010) Noise measurement from magnitude MRI using local estimates of variance and skewness. Phys Med Biol 55(16):N441-449. https://doi.org/10.1088/0031-9155/55/16/n02

    Article  Google Scholar 

  87. Ran M, Hu J, Chen Y, Chen H, Sun H, Zhou J, Zhang Y (2019) Denoising of 3D magnetic resonance images using a residual encoder–decoder Wasserstein generative adversarial network. Med Image Anal 55:165–180. https://doi.org/10.1016/j.media.2019.05.001

    Article  Google Scholar 

  88. Rawat N, Singh M, Singh B (2019) Wavelet and total variation based method using adaptive regularization for speckle noise reduction in ultrasound images. Wirel Pers Commun 106(3):pages1547-1572. https://doi.org/10.1007/s11277-019-06229-w

    Article  Google Scholar 

  89. Riji R, Rajan J, Sijbers J, Nair MS (2015) Iterative bilateral filter for rician noise reduction in MR images. Signal Image Video Process 9(7):1543–1548. https://doi.org/10.1007/s11760-013-0611-6

    Article  Google Scholar 

  90. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Int Conf Med Image Comput and Computer-assisted Interv. Springer, pp 234–241

  91. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D: Nonlinear Phenom 60(1):259–268. https://doi.org/10.1016/0167-2789(92)90242-F

    Article  MathSciNet  MATH  Google Scholar 

  92. Saadia A, Rashdi A (2016) Fractional order integration and fuzzy logic based filter for denoising of echocardiographic image. Comput Methods Program Biomed 137:65–75. https://doi.org/10.1016/j.cmpb.2016.09.006

    Article  Google Scholar 

  93. Sagheer SVM, George SN, Kurien SK (2019) Despeckling of 3D ultrasound image using tensor low rank approximation. Biomed Signal Process Control 54:101595. https://doi.org/10.1016/j.bspc.2019.101595

    Article  Google Scholar 

  94. Sa-ing V, Vorasayan P, Suwanwela NC, Auethavekiat S, Chinrungrueng C (2018) Multiscale adaptive regularisation Savitzky-Golay method for speckle noise reduction in ultrasound images. IET Image Process 12(1):105–112. https://doi.org/10.1049/iet-ipr.2017.0391

    Article  Google Scholar 

  95. Saladi S, Amutha Prabha N (2017) Analysis of denoising filters on MRI brain images. Int J Imaging Syst Technol 27(3):201–208. https://doi.org/10.1002/ima.22225

    Article  Google Scholar 

  96. Selvikvåg Lundervold A, Lundervold A (2018) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–107. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  97. Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, Cong W, Wang G (2018)3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 37(6):1522–1534. https://doi.org/10.1109/TMI.2018.2832217

    Article  Google Scholar 

  98. Sharif M, Hussain A, Jaffar MA, Choi T-S(2016)Fuzzy-based hybrid filter for Rician noise removal. Signal Image Video Process 10(2):215–224. https://doi.org/10.1007/s11760-014-0729-1

    Article  Google Scholar 

  99. Sharma A, Chaurasia V (2019) A review on magnetic resonance images denoising techniques. In: Tanveer M, Pachori RB (eds) Mach Intell and Signal Anal, Singapore. Springer Singapore, pp 707–715. https://doi.org/10.1007/978-981-13-0923-6_60

  100. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and architectures. IEEE Access 7:53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  101. Sree SJ, Vasanthanayaki C (2019)De-speckling of ultrasound images using local statistics-based trilateral filter. J Circuits Syst Comput 28(09):1950150. https://doi.org/10.1142/s0218126619501500

    Article  Google Scholar 

  102. Sudeep PV, Palanisamy P, Kesavadas C, Rajan J (2015) Nonlocal linear minimum mean square error methods for denoising MRI. Biomed Signal Process Control 20:125–134. https://doi.org/10.1016/j.bspc.2015.04.015

    Article  Google Scholar 

  103. Tang C, Li J, Wang L, Li Z, Jiang L, Cai A, Zhang W, Liang N, Li L, Yan B (2019) Unpaired low-dose CT denoising network based on cycle-consistent generative adversarial network with prior image information. Comput Math Method Med 2019:8639825. https://doi.org/10.1155/2019/8639825

  104. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. ICCV 1:2. https://doi.org/10.1109/ICCV.1998.710815

    Article  Google Scholar 

  105. Venuji Renuka S, Reddy Edla D (2019) Adaptive shrinkage on dual-tree complex wavelet transform for denoising real-time MR images. Biocybern Biomed Eng 39(1):133–147. https://doi.org/10.1016/j.bbe.2018.11.003

    Article  Google Scholar 

  106. Veraart J, Fieremans E, Novikov DS (2016) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593. https://doi.org/10.1002/mrm.26059

    Article  Google Scholar 

  107. Wang YB, Liao YT, Zhangh YK, He J, Li S, Bian ZY, Zhang H, Gao YY, Meng DY, Zuo WM, Zeng D, Ma JH (2018) Iterative quality enhancement via residual-artifact learning networks for low-dose CT. Phys Med and Biol 63(21):17. https://doi.org/10.1088/1361-6560/aae511

    Article  Google Scholar 

  108. Wang H, Zheng R, Dai F, Wang Q, Wang C (2019)High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network. J Magn Resonance Imaging 50(6):1937–1947. https://doi.org/10.1002/jmri.26761

    Article  Google Scholar 

  109. Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 36(12):2536–2545. https://doi.org/10.1109/TMI.2017.2708987

    Article  Google Scholar 

  110. Wu D, Kim K, Fakhri GE, Li Q (2017) A cascaded convolutional neural network for x-ray low-dose CT image denoising. arXiv preprint arXiv:170504267

  111. Xia Y, Gao Q, Cheng N, Lu Y, Zhang D, Ye Q (2017) Denoising 3-D magnitude magnetic resonance images based on weighted nuclear norm minimization. Biomed Signal Process Control 34:183–194. https://doi.org/10.1016/j.bspc.2017.01.016

    Article  Google Scholar 

  112. Xiao L, Li C, Wu Z, Wang T (2016) An enhancement method for X-ray image via fuzzy noise removal and homomorphic filtering. Neurocomputing 195:56–64. https://doi.org/10.1016/j.neucom.2015.08.113

    Article  Google Scholar 

  113. Yang S, Li J (2015) The design of composite adaptive morphological filter and applications to rician noise reduction in MR images. Int J Imaging Syst Technol 25(1):15–23. https://doi.org/10.1002/ima.22116

    Article  Google Scholar 

  114. Yang W, Zhang H, Yang J, Wu J, Yin X, Chen Y, Shu H, Luo L, Coatrieux G, Gui Z, Feng Q (2017) Improving low-dose CT image using residual convolutional network. IEEE Access 5:24698–24705. https://doi.org/10.1109/ACCESS.2017.2766438

    Article  Google Scholar 

  115. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018)Low-Dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging 37(6):1348–1357. https://doi.org/10.1109/TMI.2018.2827462

    Article  Google Scholar 

  116. Yang L, Shangguan H, Zhang X, Wang A, Han Z (2020)High-frequency sensitive generative adversarial network for low-dose CT image denoising. IEEE Access 8:930–943. https://doi.org/10.1109/ACCESS.2019.2961983

    Article  Google Scholar 

  117. Yap K-H, Perry SW, San Wong H, Guan L (2009) Adaptive image processing. Adaptive image processing: a computational intelligence perspective. CRC Press, Boca Raton, pp 2–8

  118. Yi X, Babyn P (2018)Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 31(5):655–669. https://doi.org/10.1007/s10278-018-0056-0

    Article  Google Scholar 

  119. Yin X, Zhao Q, Liu J, Yang W, Yang J, Quan G, Chen Y, Shu H, Luo L, Coatrieux J (2019) Domain progressive 3D residual convolution network to improve low-dose CT imaging. IEEE Trans Med Imaging 38(12):2903–2913. https://doi.org/10.1109/TMI.2019.2917258

    Article  Google Scholar 

  120. Yin ZX, Xia KW, He ZP, Zhang JN, Wang SJ, Zu BK (2021) Unpaired image denoising via wasserstein GAN in Low-Dose CT image with multi-perceptual loss and fidelity Loss. Symmetry-Basel 13(1):16. https://doi.org/10.3390/sym13010126

    Article  Google Scholar 

  121. You C, Yang Q, Shan H, Gjesteby L, Li G, Ju S, Zhang Z, Zhao Z, Zhang Y, Cong W, Wang G (2018)Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 6:41839–41855. https://doi.org/10.1109/ACCESS.2018.2858196

    Article  Google Scholar 

  122. Yuan J (2018) An improved variational model for denoising magnetic resonance images. Comput Math Appl 76(9):2212–2222. https://doi.org/10.1016/j.camwa.2018.05.044

    Article  MathSciNet  MATH  Google Scholar 

  123. Yuan ZX, Ding MY, Zhang XM (2017) Gradient controlled adaptive non-local means method for speckle reduction in ultrasound images. J Med Imaging Health Inf 7(1):288–292. https://doi.org/10.1166/jmihi.2017.2021

    Article  Google Scholar 

  124. Yuan Y, Zhang YB, Yu HY (2018) Adaptive nonlocal means method for denoising basis material images from dual-energy computed tomography. J Comput Assist Tomogr 42(6):972–981. https://doi.org/10.1097/rct.0000000000000805

    Article  Google Scholar 

  125. Zhang J, Lin G, Wu L, Wang C, Cheng Y (2015) Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomed Signal Process Control 18:1–10. https://doi.org/10.1016/j.bspc.2014.11.010

    Article  Google Scholar 

  126. Zhang J, Wu L, Lin G, Cheng Y (2017) An integrated de-speckling approach for medical ultrasound images based on wavelet and trilateral filter. Circuits Syst Signal Process 36(1):297–314. https://doi.org/10.1007/s00034-016-0305-8

    Article  Google Scholar 

  127. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans Image Process 26(7):3142–3155

    Article  MathSciNet  Google Scholar 

  128. Zhang YB, Salehjahromi M, Yu HY (2019) Tensor decomposition and non-local means based spectral CT image denoising. J X-ray Sci Technol 27(3):397–416. https://doi.org/10.3233/xst-180413

    Article  Google Scholar 

  129. Zhao T, Hoffman J, McNitt-Gray M, Ruan D (2019)Ultra-low-dose CT image denoising using modified BM3D scheme tailored to data statistics. Med Phys 46(1):190–198. https://doi.org/10.1002/mp.13252

    Article  Google Scholar 

  130. Zhou Z, Wang Y, Guo Y, Qi Y, Yu J (2020) Image quality improvement of hand-held ultrasound devices with a two-stage generative adversarial network. IEEE Trans Biomed Eng 67(1):298–311. https://doi.org/10.1109/TBME.2019.2912986

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme [FRGS/1/2019/TK04/UM/01/2], Ministry of Higher Education, Malaysia, the research grant of University of Malaya [IIRG012C-2019], and the World Bank-funded Accelerating Higher Education Expansion and Development Operation, Sri Lanka [Grant number: AHEAD/PhD/R1-PART-2/ENG&TECH/105].

Funding

This work was supported by the Fundamental Research Grant Scheme [FRGS/1/2019/TK04/UM/01/2], Ministry of Higher Education, Malaysia, the research grant of University of Malaya [IIRG012C-2019], and the World Bank-funded Accelerating Higher Education Expansion and Development Operation, Sri Lanka [Grant number: AHEAD/PhD/R1-PART-2/ENG&TECH/105].

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to conduct research, analysis and writing of the manuscripts.

Corresponding author

Correspondence to Nor Aniza Abdullah.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulathilake, K.A.S.H., Abdullah, N.A., Sabri, A.Q.M. et al. A review on self-adaptation approaches and techniques in medical image denoising algorithms. Multimed Tools Appl 81, 37591–37626 (2022). https://doi.org/10.1007/s11042-022-13511-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13511-w

Keywords

Navigation