Skip to main content
Log in

Compressed sensing based fingerprint imaging system using a chaotic model-based deterministic sensing matrix

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A secured compressed sensing (CS) systems design approach uses a novel deterministic sensing matrix to sense and transmit fingerprint images. The performance of the CS system was studied in detail by varying CS and security parameters. The sampling and sparse coefficient are the parameters considered from compressed sensing, whereas the encryption key is from the security scheme. The simultaneous compression and encryption has been achieved by multiplying the sparse modeled data with the proposed deterministic partial bounded orthogonal sensing matrix. A chaotic model-based permutation is applied to scramble the DCT matrix rows to build the sensing matrix. Recovering and decryption of the compressed image are accomplished with the help of the L1 optimization method. The experimental test shows that a sparse vector of 121 widths has been recovered by taking about 25 samples. This indicates that up to 1 : 5 compression ratio is supported without damaging the fingerprint minutiae. If only compression is required without encryption, up to a 1 : 16 ratio can be achieved. The peak signal-to-noise ratio (PSNR) is 27.65 dB for both compression ratios under fulfilments of all necessary security requirements. The 7.20 value of the entropy, histogram analysis, and the correlation analysis show the proposed scheme possesses adequate randomness. Furthermore, the ability of the system resistance against attacks is proved by 100% NPCR (Net Pixel Change Rate) and 0.92% UACI (Unified Average Changing Intensity) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Achanta SDM, Karthikeyan T, Vinoth Kanna R (2020) A wireless IOT system towards gait detection technique using FSR sensor and wearable IOT devices. Int J Intell Unmanned Syst 8(1):43–54. https://doi.org/10.1108/IJIUS-01-2019-0005

    Article  Google Scholar 

  2. Achanta SDM, Karthikeyan T, Vinothkanna R (2019) A novel hidden Markov model-based adaptive dynamic time warping (HMDTW) gait analysis for identifying physically challenged persons. Soft Comput 23(18):8359–8366. https://doi.org/10.1007/s00500-019-04108-x

    Article  Google Scholar 

  3. Aharon M, Elad M, Bruckstein AM (2006) On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear Algebra Appl. https://doi.org/10.1016/j.laa.2005.06.035

  4. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54:4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  MATH  Google Scholar 

  5. Allen JB, Rabiner LR (1977) A unified approach to short-time fourier analysis and synthesis. Proc IEEE 65:1558–1564. https://doi.org/10.1109/PROC.1977.10770

    Article  Google Scholar 

  6. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos. https://doi.org/10.1142/S0218127406015970

  7. Antonini M, Barlaud M, Mathieu P, Daubechies I (1992) Image coding using wavelet transform. IEEE Trans Image Process 1(2):205–220

    Article  Google Scholar 

  8. Bakiri M, Guyeux C, Couchot JF, Oudjida AK (2018) Survey on hardware implementation of random number generators on FPGA: theory and experimental analyses. Comput Sci Rev 27:135–153. https://doi.org/10.1016/j.cosrev.2018.01.002

    Article  MATH  Google Scholar 

  9. Cand‘es E, Romberg J (2005) 1-magic: Recovery of Sparse Signals via Convex Programming, Caltech. https://candes.su.domains/software/l1magic/atlast. Accessed 10 Dec 2021

  10. Candès EJ (2008) The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math. https://doi.org/10.1016/j.crma.2008.03.014

  11. Candès EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun Pure Appl Math 57:219–266. https://doi.org/10.1002/cpa.10116

    Article  MATH  Google Scholar 

  12. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Tran Inf Theory. https://doi.org/10.1109/TIT.2005.862083

  13. Chao L, Han J, Yan L, Sun L, Huang F, Zhu ZB, Wei S, Ji H, Ma D (2020) Fast compressed sensing analysis for imaging reconstruction with primal dual interior point algorithm. Opt Lasers Eng 129. https://doi.org/10.1016/j.optlaseng.2020.106082

  14. Chen G, Maggioni M (2010) Multiscale geometric wavelets for the analysis of point clouds. In: 2010 44th Annual Conference on Information Sciences and Systems, CISS. pp 1–6. https://doi.org/10.1109/CISS.2010.5464843

  15. Djelouat H, Amira A, Bensaali F, Boukhennoufa I (2020) Secure compressive sensing for ECG monitoring. Comput Secur 88:101649. https://doi.org/10.1016/j.cose.2019.101649

    Article  Google Scholar 

  16. Do TT, Gan L, Nguyen NH, Tran TD (2012) Fast and efficient compressive sensing using structurally random matrices. IEEE Trans Signal Process 60(1):139–154. https://doi.org/10.1109/TSP.2011.2170977

    Article  MATH  Google Scholar 

  17. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory. https://doi.org/10.1109/TIT.2006.871582

  18. Elad M, Bruckstein AM (2002) A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans Inf Theory. https://doi.org/10.1109/TIT.2002.801410

  19. Fan H, Li M, Mao W (2017) VQ-Based compressive sensing with high compression quality. Electron Lett 53(17):1196–1198. https://doi.org/10.1049/el.2017.1321

    Article  Google Scholar 

  20. Fan H, Zhou K, Zhang E, Wen W, Li M (2020) Subdata image encryption scheme based on compressive sensing and vector quantization. Neural Comput Applic 32(16):12771–12787. https://doi.org/10.1007/s00521-020-04724-x

    Article  Google Scholar 

  21. Fishman GS, Moore LR III (1986) Erratum: an exhaustive analysis of multiplicative congruential random number generators with modulus 231 − 1, SIAM J Sci Stat Comput. https://doi.org/10.1137/0907072

  22. Gangopadhyay D, Allstot EG, Dixon AMR, Natarajan K, Gupta S, Allstot DJ (2014) Compressed sensing analog front-end for bio-sensor applications, IEEE J Solid-State Circ. https://doi.org/10.1109/JSSC.2013.2284673

  23. Hashad FG, Zahran O, El-Rabaie ESM et al (2019) Fusion-based encryption scheme for cancelable fingerprint recognition. Multimed Tools Appl 78:27351–27381. https://doi.org/10.1007/s11042-019-7580-xhttps://doi.org/10.1007/s11042-019-7580-x

    Article  Google Scholar 

  24. Hopper T, Brislawn C, Bradley J (1993) –WSQ gray-scale fingerprint image compression specification, Federal Bureau of Investigation, Criminal Justice Information Services, Washington, DC, USA, Tech. Rep. IAFIS-IC-0110-V2

  25. Hopper T, Preston F (1992) Compression of grey-scale fingerprint images. In: Proceedings DCC ’92. Data Compression Conference. pp 309–318. https://doi.org/10.1109/DCC.1992.227450

  26. Hsiung YS, Lu MSC (2011) A CMOS capacitive pressure sensor chip for fingerprint detection. In: 2011 16th International Solid-State Sensors, Actuators Microsystems Conference TRANSDUCERS’11. pp 24–27

  27. Hu G, Xiao D, Wang Y, Xiang T (2017) An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications. J Vis Commun Image Represent 44:116–127. https://doi.org/10.1016/j.jvcir.2017.01.022

    Article  Google Scholar 

  28. Javidi B (1999) Noise performance of double-phase encryption compared to XOR encryption. Opt Eng. https://doi.org/10.1117/1.602074

  29. Javidi B (2000) Optical encryption using a joint transform correlator architecture. Opt Eng. https://doi.org/10.1117/1.1304844

  30. Jiang X, Tang HY, Lu Y, Ng EJ, Tsai JM, Boser BE, Horsley DA (2017) Ultrasonic fingerprint sensor with transmit beamforming based on a PMUT array bonded to CMOS circuitry. IEEE Trans Ultrasonics, Ferroelectrics Frequency Control 64(9):1401–1408. https://doi.org/10.1109/TUFFC.2017.2703606

    Article  Google Scholar 

  31. Jung SM, Nam JM, Yang DH, Lee MK (2005) A CMOS integrated capacitive fingerprint sensor with 32-bit RISC microcontroller. IEEE J Solid-State Circ 40(8):1745–1750

    Article  Google Scholar 

  32. Kharratzadeh M, Sharifnassab A, Babaie-Zadeh M (2017) Invariancy of sparse recovery algorithms. IEEE Trans Inf Theory 63:3333–3347. https://doi.org/10.1109/TIT.2017.2686428

    Article  MATH  Google Scholar 

  33. Komarinski P (2005) Automated fingerprint identification systems (AFIS), Elsevier Science Technology

  34. Kreutz-delgado K, Murray JF, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation kenneth. Neural Comput 15. https://doi.org/10.1162/089976603762552951

  35. Kwon K, Nam I, Lee K (2016) A three-terminal n+-p-n+ silicon CMOS light-emitting device for the new fully integrated optical-type fingerprint recognition system. J Disp Technol 12(1):77–81. https://doi.org/10.1109/JDT.2015.2456641

    Article  Google Scholar 

  36. Li R (2020) Fingerprint-related chaotic image encryption scheme based on blockchain framework Multimed Tools Appl. https://doi.org/10.1007/s11042-020-08802-z

  37. Li X, Cai J (2007) Robust transmission of JPEG2000 encoded images over packet loss channels. In: Proceedings of the 2007 IEEE International Conference on Multimedia and Expo, ICME. p 2007. https://doi.org/10.1109/icme.2007.4284808

  38. Liu JC, Hsiung YS, Lu MSC (2012) A CMOS micromachined capacitive sensor array for fingerprint detection. IEEE Sens J 12(5):1004–1010

    Article  Google Scholar 

  39. Liu D, Wang Q, Zhang Y, Liu X, Lu J, Sun J (2019) FPGA-Based real-time compressed sensing of multichannel EEG signals for wireless body area networks. Biomed Signal Process Control 49:221–230. https://doi.org/10.1016/j.bspc.2018.12.019

    Article  Google Scholar 

  40. Mairal J, Bach F, FRANCISBACH J, Sapiro G (2010) Ponce JEANPONCE online learning for matrix factorization and sparse coding. J Mach Learn Res 11:19–60. http://www.jmlr.org/papers/volume11/mairal10a/mairal10a.pdf

    MATH  Google Scholar 

  41. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding, J Mach Learn Res. https://doi.org/10.1145/1756006.1756008

  42. Mallat S (2009) A Wavelet Tour of Signal Processing. https://doi.org/10.1016/B978-0-12-374370-1.X0001-8

  43. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries, IEEE Trans Signal Process. https://doi.org/10.1109/78.258082

  44. Maltoni D, Maio D, Jain AK, Prabhakar S (2009) Handbook of Fingerprint Recognition. Springer Science & Business Media. p 216. ISBN 978-1-84882-254-2

  45. May RM (1976) Simple mathematical models with very complicated dynamics. Nature. https://doi.org/10.1038/261459a0

  46. Mehta G, Dutta MK, Karasek J, Kim PS (2013) An efficient and lossless fingerprint encryption algorithm using Henon map & Arnold transformation. In: 2013 International Conference on Control Communication and Computing (ICCC). pp 485–489. https://doi.org/10.1109/ICCC.2013.6731703

  47. Needell D, Tropp JA (2009) CosaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal. https://doi.org/10.1016/j.acha.2008.07.002

  48. Orsdemir A, Altun HO, Sharma G, Bocko MF (2008) On the security and robustness of encryption via compressed sensing. In: Proceedings of the IEEE Military Communications Conference, MILCOM. https://doi.org/10.1109/MILCOM.2008.4753187

  49. Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Conference Rec Asilomar Conference on Signals, Systems, and Computers. https://doi.org/10.1109/acssc.1993.342465

  50. Polania LF, Carrillo RE, Blanco-Velasco M, Barner KE (2015) Exploiting prior knowledge in compressed sensing wireless ECG systems, IEEE J Biomed Heal Inform. https://doi.org/10.1109/JBHI.2014.2325017

  51. Polat Ö, Kayhan SK (2018) High-speed FPGA implementation of orthogonal matching pursuit for compressive sensing signal reconstruction. Comput Electr Eng 71:173–190. https://doi.org/10.1016/j.compeleceng.2018.07.017

    Article  Google Scholar 

  52. Rani M, Dhok SB, Deshmukh RB (2018) A systematic review of compressive sensing: concepts, implementations and applications. IEEE Access. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2018.2793851

  53. Ravelomanantsoa A, Rabah H, Rouane A (2015) Compressed sensing: a simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans Instrum Meas 64:3405–3413. https://doi.org/10.1109/TIM.2015.2459471

    Article  Google Scholar 

  54. Rudelson M, Vershynin R (2008) On sparse reconstruction from Fourier and Gaussian measurements. Commun Pur Appl Math 61(8):1025–1045. https://doi.org/10.1002/cpa.20227

    Article  MATH  Google Scholar 

  55. Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys. https://doi.org/10.1007/BF01646553

  56. Sato N, Shigematsu S, Morimura H, Yano M, Kudou K, Kamei T, Machida K (2005) Novel surface structure and its fabrication process for MEMS fingerprint sensor. IEEE Trans Electron Devices 52:1026–1032. https://doi.org/10.1109/TED.2005.846342

    Article  Google Scholar 

  57. (2001) ScientificWorking Group on Friction Ridge Analysis, Study and Technology (SWGFAST): Friction Ridge Digital Imaging Guidelines, 1 edn. http://www.theiai.org/guidelines/swgfast/. Accessed 12 Dec 2021

  58. Shah AA, Parah SA, Rashid M, Elhoseny M (2020) Efficient image encryption scheme based on generalized logistic map for real time image processing. J Real-Time Image Process 17:2139–2151. https://doi.org/10.1007/s11554-020-01008-4

    Article  Google Scholar 

  59. Shao G, Wu Y, Yong A, Liu X, Guo T (2014) Fingerprint compression based on sparse representation. IEEE Trans Image Process 23(2):489–501. https://doi.org/10.1109/TIP.2013.2287996

    Article  MATH  Google Scholar 

  60. Sharma A, Shwetank A, Praveena C (2020) A novel image compression based method for multispectral fingerprint biometric system. Procedia Comput Sci 171:1698–1707. (Elsevier)

    Article  Google Scholar 

  61. Shen Q, Liu W, Lin Y, Zhu Y (2019) Designing an image encryption scheme based on compressive sensing and non-uniform quantization for wireless visual sensor networks. Sensors (Switzerland) 19(14). https://doi.org/10.3390/s19143081

  62. Sivapalan S, Rana RK, Chen D, Sridharan S, Denmon S, Fookes C (2011) Compressive sensing for gait recognition. In: Proceedings - 2011 international conference on digital image computing: techniques and applications, DICTA 2011 (pp 567–571). IEEE Computer Society. https://doi.org/10.1109/DICTA.2011.101

  63. Skodras A, Christopoulos C, Ebrahimi T (2001) The JPEG 2000 still image compression standard. IEEE Signal Process Mag 18(5):36–58

    Article  MATH  Google Scholar 

  64. Sun C, Li W, Chen W (2017) A compressed sensing based method for reducing the sampling time of a high resolution pressure sensor array system. Sensors (Switzerland) 17(8). https://doi.org/10.3390/s17081848

  65. Tang Y, Zhao M, Li L (2020) Secure and efficient image Compression-Encryption scheme using new chaotic structure and compressive sensing. Secur Commun Netw 2020. https://doi.org/10.1155/2020/6665702

  66. Tawfic I, Kayhan S (2015) Compressed sensing of ECG signal for wireless system with new fast iterative method. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2015.09.010

  67. Thomos N, Boulgouris NV, Strintzis MG (2006) Optimized transmission of JPEG2000 streams over wireless channels. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2005.860338

  68. Vidyasagar M (2016) A tutorial introduction to compressed sensing. In: 2016 55th IEEE Conference on Decision and Control (CDC). pp 5091–5104. https://doi.org/10.1109/CDC.2016.7799048

  69. Wang Z, Bovik AC, Sheikh HR (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2003.819861

  70. Xie Y, Yu J, Guo S, Ding Q, Wang E (2019) Image encryption scheme with compressed sensing based on new three-dimensional chaotic system. Entropy 21(9). https://doi.org/10.3390/e21090819

  71. Zhang Y, Zhang LY, Zhou J, Liu L, Chen F, He X (2016) A review of compressive sensing in information security field. IEEE Access. https://doi.org/10.1109/ACCESS.2016.2569421

  72. Zhang Y, Zheng CH, Tanno N (2002) Optical encryption based on iterative fractional Fourier transform. Opt Commun. https://doi.org/10.1016S0030-4018(02)01113-6

  73. Zhao C, Wu X, Huang L, Yao Y, Chang YC (2014) Compressed sensing based fingerprint identification for wireless transmitters. Sci World J 2014. https://doi.org/10.1155/2014/473178

  74. Zhao C, Wu X, Huang L, Yao Y, Chang YC (2014) Compressed sensing based fingerprint identification for wireless transmitters. Sci World J 2014. https://doi.org/10.1155/2014/473178

Download references

Author information

Authors and Affiliations

Authors

Contributions

Workneh Wolde Hailemariam: Design methodology, simulation work, writing and editing the manuscript draft. Pallavi Gupta: supervision.

Corresponding author

Correspondence to Workneh Wolde Hailemariam.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hailemariam, W.W., Gupta, P. Compressed sensing based fingerprint imaging system using a chaotic model-based deterministic sensing matrix. Multimed Tools Appl 82, 6885–6915 (2023). https://doi.org/10.1007/s11042-022-13444-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13444-4

Keywords

Navigation