Skip to main content
Log in

IETD: a novel image encryption technique using Tinkerbell map and Duffing map for IoT applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In many sensitive Internet-of-Things (IoT) based applications, sensor devices send information in the form of images. Chaos theory is the study of deterministic laws that exhibit characteristics like unpredictability, randomness and irregularity. These characteristics can be used to encrypt images thus providing an extra layer of security over the existing security infrastructure of the IoT application. In this work, we present a symmetric image encryption algorithm called, IETD which is suitable for IoT applications. Here, we propose a new chaotic map named “TD Map” using Tinkerbell Map and Duffing Map. We also propose an advanced zigzag algorithm that can encrypt color images of any resolution. The “TD Map” is used to generate a 2-D chaotic sequence which is utilized by simple operations like scrambling and swapping to encrypt the image. The proposed scheme has undergone many statistical tests and analyses to evaluate its performance against cryptanalysis attacks, noise, data loss, correlation immunity and so on which show that it achieves better values in each of the standard metrics under consideration than the existing ciphers. MSE, PSNR, information entropy, NPCR and UACI values show that the proposed scheme is at par with the existing schemes. Moreover, it has exhibited good energy efficiency and is easy to implement in hardware. These altogether make IETD a suitable lightweight cipher to deploy in real-time IoT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Code Availability

The source code is publicly available at https://github.com/Tejas-Dhopavkar/IETD

Notes

  1. https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

  2. https://webhome.phy.duke.edu/~rgb/General/general.php

  3. https://www.raspberrypi.org/documentation/hardware/raspberrypi/power/README.md

References

  1. Agarwal N, Singh AK, Singh PK (2019) Survey of robust and imperceptible watermarking. Multimed Tools Appl 78(7):8603–8633

    Article  Google Scholar 

  2. Alassaf N, Gutub A, Parah SA, Al Ghamdi M (2019) Enhancing speed of SIMON: a light-weight-cryptographic algorithm for IoT applications. Multimed Tools Appl 78(23):32633–32657

    Article  Google Scholar 

  3. Arnol’d VI, Avez A (1968) Ergodic problems of classical mechanics

  4. Babaei A, Motameni H, Enayatifar R (2020) A new permutation-diffusion-based image encryption technique using cellular automata and dna sequence. Optik 203:164000

    Article  Google Scholar 

  5. Broumandnia A (2019) The 3d modular chaotic map to digital color image encryption. Futur Gener Comput Syst 99:489–499

    Article  Google Scholar 

  6. Choi US, Cho SJ, Kim JG, Kang SW, Kim HD Color image encryption based on programmable complemented maximum length cellular automata and generalized 3-d chaotic cat map. Multimed Tool Appl:1–18

  7. Dai JY, Ma Y, Zhou NR (2021) Quantum multi-image compression-encryption scheme based on quantum discrete cosine transform and 4D hyper-chaotic Henon map. Quantum Inf Process 20(7):1–24

    Article  MathSciNet  Google Scholar 

  8. Derhamy H, Eliasson J, Delsing J (2017) Iot interoperability—on-demand and low latency transparent multiprotocol translator. IEEE Internet Thing J 4(5):1754–1763

    Article  Google Scholar 

  9. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inform Theory 22(6):644–654

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong C (2014) Color image encryption using one-time keys and coupled chaotic systems. Signal Process Image Commun 29(5):628–640

    Article  Google Scholar 

  11. Enayatifar R, Guimarães F. G., Siarry P (2019) Index-based permutation-diffusion in multiple-image encryption using dna sequence. Opt Lasers Eng 115:131–140

    Article  Google Scholar 

  12. Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372(4):394–400

    Article  MATH  Google Scholar 

  13. Gong L, Wu R, Zhou N (2020) A New 4D Chaotic system with coexisting hidden chaotic attractors. Int J Bifurcation Chaos 30(10):2050142

    Article  MathSciNet  MATH  Google Scholar 

  14. Griffin J (2013) The sine map

  15. Heuer J, Hund J, Pfaff O (2015) Toward the web of things: applying web technologies to the physical world. Computer 48(5):34–42

    Article  Google Scholar 

  16. Hu X, Wei L, Chen W, Chen Q, Guo Y (2020) Color image encryption algorithm based on dynamic chaos and matrix convolution. IEEE Access 8:12452–12466

    Article  Google Scholar 

  17. Huang C, Nien HH (2009) Multi chaotic systems based pixel shuffle for image encryption. Opt Commun 282(11):2123–2127

    Article  Google Scholar 

  18. Khan MA, Salah K (2018) Iot security: review, blockchain solutions, and open challenges. Futur Gener Comput Syst 82:395–411

    Article  Google Scholar 

  19. Kimbahune VV, Deshpande AV, Mahalle PN (2017) Lightweight key management for adaptive addressing in next generation internet. International Journal of Ambient Computing and Intelligence (IJACI) 8 (1):50–69

    Article  Google Scholar 

  20. Li C, Luo G, Qin K, Li C (2017) An image encryption scheme based on chaotic tent map. Nonlinear Dyn 87(1):127–133

    Article  Google Scholar 

  21. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261(5560):459–467

    Article  MATH  Google Scholar 

  22. Mhetre NA, Deshpande AV, Mahalle PN (2016) Trust management model based on fuzzy approach for ubiquitous computing. International Journal of Ambient Computing and Intelligence (IJACI) 7(2):33–46

    Article  Google Scholar 

  23. Mishra M, Singh P, Garg C (2014) A new algorithm of encryption and decryption of images using chaotic mapping. International Journal of Information & Computation Technology. ISSN:0974–2239

  24. Muñoz-Guillermo M. (2021) Image encryption using q-deformed logistic map. Inf Sci 552:352–364

    Article  MathSciNet  MATH  Google Scholar 

  25. Nadeem A, Javed MY (2005) A performance comparison of data encryption algorithms. In: 2005 International conference on information and communication technologies, pp 84–89. IEEE

  26. Nayak P, Nayak SK, Das S (2018) A secure and efficient color image encryption scheme based on two chaotic systems and advanced encryption standard. In: 2018 International conference on advances in computing, communications and informatics (ICACCI), pp 412–418. IEEE

  27. Nayak SK, Tripathy S (2018) Sepdp: secure and efficient privacy preserving provable data possession in cloud storage. IEEE Trans Serv Comput

  28. Neshenko N, Bou-Harb E, Crichigno J, Kaddoum G, Ghani N (2019) Demystifying iot security: an exhaustive survey on iot vulnerabilities and a first empirical look on internet-scale iot exploitations. IEEE Commun Surveys Tutorial 21(3):2702–2733

    Article  Google Scholar 

  29. Noura M, Atiquzzaman M, Gaedke M (2019) Interoperability in internet of things: taxonomies and open challenges. Mobile Netw Appl 24(3):796–809

    Article  Google Scholar 

  30. Omoniwa B, Hussain R, Javed MA, Bouk SH, Malik SA (2018) Fog/edge computing-based iot (feciot): architecture, applications, and research issues. IEEE Int Thing J 6(3):4118–4149

    Article  Google Scholar 

  31. Parashar D, Roy S, Dey N, Jain V, Rawat U (2018) Symmetric key encryption technique: a cellular automata based approach. In: Cyber security, pp 59–67. Springer

  32. Prasithsangaree P, Krishnamurthy P (2003) Analysis of energy consumption of rc4 and aes algorithms in wireless lans. In: GLOBECOM’03. IEEE Global telecommunications conference (IEEE cat. no. 03CH37489), vol 3, pp 1445–1449. IEEE

  33. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126

    Article  MathSciNet  MATH  Google Scholar 

  34. Roy S, Karjee J, Rawat U, Dey N, et al. (2016) Symmetric key encryption technique: a cellular automata based approach in wireless sensor networks. Procedia Comput Sci 78:408–414

    Article  Google Scholar 

  35. Roy S, Rawat U, Karjee J (2019) A lightweight cellular automata based encryption technique for iot applications. IEEE Access 7:39782–39793

    Article  Google Scholar 

  36. Roy S, Rawat U, Sareen HA, Nayak SK (2020) Ieca: an efficient iot friendly image encryption technique using programmable cellular automata. J Ambient Intell Human Comput:1–20

  37. Roy S, Shrivastava M, Pandey CV, Nayak SK, Rawat U (2020) IEVCA: an efficient image encryption technique for IoT applications using 2-D Von-Neumann cellular automata. Multimed Tools Appl:1–39

  38. Sanchez-Avila C, Sanchez-Reillol R (2001) The rijndael block cipher (aes proposal): a comparison with des. In: Proceedings IEEE 35th Annual 2001 international carnahan conference on security technology (Cat. No. 01CH37186), pp 229–234. IEEE

  39. Som S, Kotal A, Mitra A, Palit S, Chaudhuri B (2014) A chaos based partial image encryption scheme. In: 2014 2Nd international conference on business and information management (ICBIM), pp 58–63. IEEE

  40. Stoyanov B, Kordov K (2014) Novel image encryption scheme based on chebyshev polynomial and duffing map. Sci World J:2014

  41. Tong XJ, Wang Z, Zhang M, Liu Y (2013) A new algorithm of the combination of image compression and encryption technology based on cross chaotic map. Nonlinear Dyn 72(1-2):229–241

    Article  MathSciNet  Google Scholar 

  42. Wang X, Guan N (2020) A novel chaotic image encryption algorithm based on extended zigzag confusion and rna operation. Opt Laser Technol 106366:131

    Google Scholar 

  43. Wong KW, Kwok BSH, Law WS (2008) A fast image encryption scheme based on chaotic standard map. Phys Lett A 372(15):2645–2652

    Article  MATH  Google Scholar 

  44. Wu Y, Noonan JP, Agaian S, et al. (2011) Npcr and uaci randomness tests for image encryption. Cyber journals: multidisciplinary journals in science and technology. Journal of Selected Areas in Telecommunications (JSAT) 1(2):31–38

    Google Scholar 

  45. Xian Y, Wang X (2021) Fractal sorting matrix and its application on chaotic image encryption. Inf Sci 547:1154–1169

    Article  MathSciNet  MATH  Google Scholar 

  46. Yan L, Fu J, Wang C, Ye Z, Chen H, Ling H (2021) Enhanced network optimized generative adversarial network for image enhancement. Multimed Tools Appl 80(9):14363–14381

    Article  Google Scholar 

  47. Yang Y, Wu L, Yin G, Li L, Zhao H (2017) A survey on security and privacy issues in internet-of-things. IEEE Int Thing J 4(5):1250–1258

    Article  Google Scholar 

  48. Yuan S, Jiang T, Jing Z (2011) Bifurcation and chaos in the tinkerbell map. Int J Bifurcation Chaos 21(11):3137–3156

    Article  MathSciNet  MATH  Google Scholar 

  49. Zarebnia M, Pakmanesh H, Parvaz R (2019) A fast multiple-image encryption algorithm based on hybrid chaotic systems for gray scale images. Optik 179:761–773

    Article  Google Scholar 

  50. Zear A, Singh PK (2021) Secure and robust color image dual watermarking based on LWT-DCT-SVD. Multimed Tools Appl:1–18

  51. Zhang X, Parhi KK (2004) High-speed vlsi architectures for the aes algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12 (9):957–967

    Article  Google Scholar 

  52. Zhang YQ, He Y, Li P, Wang XY (2020) A new color image encryption scheme based on 2dnlcml system and genetic operations. Opt Lasers Eng 106040:128

    Google Scholar 

  53. Zhou J, Cao Z, Dong X, Vasilakos AV (2017) Security and privacy for cloud-based iot: Challenges. IEEE Commun Mag 55(1):26–33

    Article  Google Scholar 

  54. Zhou NR, Hua TX, Gong LH, Pei DJ, Liao QH (2015) Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf Process 14(4):1193–1213

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhou NR, Huang LX, Gong LH, Zeng QW (2020) Novel quantum image compression and encryption algorithm based on DQWT and 3D hyper-chaotic Henon map. Quantum Inf Process 19(9):1–21

    Article  MathSciNet  Google Scholar 

  56. Zhu C (2012) A novel image encryption scheme based on improved hyperchaotic sequences. Opt Commun 285(1):29–37

    Article  Google Scholar 

Download references

Funding

This work is supported by Research Funding programme of Data Security Council of India (DSCI).

Author information

Authors and Affiliations

Authors

Contributions

Tejas Atul Dhopavkar and Sanjeet Kumar Nayak found the problem and designed the IETD. Tejas Atul Dhopavkar implemented the proposed scheme. Tejas Atul Dhopavkar, Sanjeet Kumar Nayak, and Satyabrata Roy conducted the experiments to evaluate the performance of the IETD and wrote the paper.

Corresponding author

Correspondence to Sanjeet Kumar Nayak.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhopavkar, T.A., Nayak, S.K. & Roy, S. IETD: a novel image encryption technique using Tinkerbell map and Duffing map for IoT applications. Multimed Tools Appl 81, 43189–43228 (2022). https://doi.org/10.1007/s11042-022-13162-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13162-x

Keywords

Navigation