Abstract
Complexity of any onboard hyperspectral image sensor is a challenging issue. The existing hyperspectral image compression algorithm plays a great role in reducing the data transmission bandwidth, data processing time, processing power and coding memory. Many wavelet transform-based set partitioned hyperspectral image compression algorithms are proposed in the past which work with lossy and lossless compression. These compression algorithms use lists or state tables to keep track of significant and insignificant sets or coefficients. The 3D wavelet block tree coding (3D-WBTC) has superior coding performance due to the exploitation of the inter sub-band & intra sub-band redundancy. The 3D-Low-Complexity Block Tree Coding (3D-LCBTC) is a novel implementation of 3D-WBTC which uses two state tables and very small size link lists. The 3D-LCBTC uses depth-first search approach which reduces the complexity of the compression process significantly. Thus, the proposed compression algorithm is a suitable candidate for resources-constrained onboard hyperspectral image sensors.
This is a preview of subscription content, access via your institution.



References
Achard V, Foucher PY, Dubucq D (2021) Hydrocarbon pollution detection and mapping based on the combination of various hyperspectral imaging processing tools. Remote Sens 13(5):1020. https://doi.org/10.3390/rs13051020
Anand R, Veni S, Aravinth J (2017) Big data challenges in airborne hyperspectral image for urban landuse classification. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI): 1808–1814. https://doi.org/10.1109/ICACCI.2017.8126107
Bairagi VK, Sapkal AM, Gaikwad MS (2013) The role of transforms in image compression. Journal of The Institution of Engineers (India): Series B 94(2):135–140. https://doi.org/10.1007/s40031-013-0049-9
Bajpai S, Singh HV, Kidwai NR (2017) Feature extraction & classification of hyperspectral images using singular spectrum analysis & multinomial logistic regression classifiers. In IEEE International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) Aligarh, India: 97-100. 10.1109/MSPCT.2017.8363982
Bajpai, Shrish, Harsh Vikram Singh, and Naimur Rahman Kidwai (2019) 3D modified wavelet block tree coding for hyperspectral images. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS) 15 (2): 1001–1008. https://doi.org/10.11591/ijeecs.v15.i2.pp1001-1008
Bajpai S, Kidwai NR, Singh HV (2019) 3D wavelet block tree coding for hyperspectral images. International Journal of Innovative Technology and Exploring Engineering 8(6C):64–68
Bajpai S, Kidwai NR, Singh HV, Singh AK (2019) Low memory block tree coding for hyperspectral images. Multimed Tools Appl 78(19):27193–27209. https://doi.org/10.1007/s11042-019-07797-6
Bajpai, Shrish, Naimur Rahman Kidwai, Vishal Singh Chandel (2020) Low memory wavelet based hyperspectral image coding using 2D Dyadic Wavelet Transform, 11(6): 25–33. https://doi.org/10.34218/IJEET.11.6.2020.003
Bajpai S, Kidwai NR, Singh HV, Singh AK (2022) A low complexity hyperspectral image compression through 3D set partitioned embedded zero block coding. Multimed Tools Appl 81:841–872. https://doi.org/10.1007/s11042-021-11456-0
Báscones D, González C, Mozos D (2020) An FPGA accelerator for real-time lossy compression of hyperspectral images. Remote Sens 12(16):2563. https://doi.org/10.3390/rs12162563
Ben S, Parvathy VS, Laxmi Lydia E, Rani P, Polkowski Z, Shankar K (2020) Optimal deep learning based image compression technique for data transmission on industrial Internet of things applications Transactions on Emerging Telecommunications Technologies, e3976. https://doi.org/10.1002/ett.3976
Bilgin A, Zweig G, Marcellin MW (2000) Three-dimensional image compression with integer wavelet transforms. Appl Opt 39(11):1799–1814. https://doi.org/10.1364/AO.39.001799
Boettcher JB, Du Q, Fowler JE (2007) Hyperspectral image compression with the 3D dual-tree wavelet transform. IEEE International Geoscience and Remote Sensing Symposium: 1033-1036. https://doi.org/10.1109/IGARSS.2007.4422977
Chen Y, Huang TZ, He W, Zhao XL, Zhang H, Zeng J (2021). Hyperspectral image Denoising using factor group sparsity-regularized nonconvex low-rank approximation. IEEE Trans Geosci Remote Sens https://doi.org/10.1109/TGRS.2021.3110769.
Cheng KJ, Dill J (2014) Lossless to lossy dual-tree BEZW compression for hyperspectral images. IEEE Trans Geosci Remote Sens 52(9):5765–5770. https://doi.org/10.1109/TGRS.2013.2292366
Cheng T, Wang B (2021) Decomposition model with background dictionary learning for hyperspectral target detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:1872–1884. https://doi.org/10.1109/JSTARS.2021.3049843
Christophe E, Mailhes C, Duhamel P (2008) Hyperspectral image compression: adapting SPIHT and EZW to anisotropic 3-D wavelet coding. IEEE Trans Image Process 17(12):2334–2346. https://doi.org/10.1109/TIP.2008.2005824
Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490. https://doi.org/10.1111/tgis.12164
Daniel B, González C, Mozos D (2018) Hyperspectral image compression using vector quantization, PCA and JPEG2000. Remote Sens 10(6):907. https://doi.org/10.3390/rs10060907
Das S (2021) Hyperspectral image, video compression using sparse tucker tensor decomposition. IET Image Process 15(4):964–973. https://doi.org/10.1049/ipr2.12077
Datta A, Ghosh S, Ghosh A (2017) Supervised feature extraction of hyperspectral images using partitioned maximum margin criterion. IEEE Geosci Remote Sens Lett 14(1):82–86. https://doi.org/10.1109/LGRS.2016.2628078
Dmitriev EV, Kozoderov VV, Dementyev AO, Safonova AN (2018) Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics, Instrumentation and Data Processing 54(3):213–221. https://doi.org/10.3103/S8756699018030019
Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428. https://doi.org/10.1109/36.823937
Dussarrat P, Theodore B, Coppens D, Standfuss C, Tournier B (2021) Introduction to the ringing effect in satellite hyperspectral atmospheric spectrometry. Atmospheric Measurement Techniques Discussions: 1–12. https://doi.org/10.5194/amt-2021-121
Gnutti A, Guerrini F, Adami N, Migliorati P, Leonardi R (2021) A wavelet filter comparison on multiple datasets for signal compression and denoising. Multidim Syst Sign Process 32(2):791–820. https://doi.org/10.1007/s11045-020-00753-w
Goetz AF (2009) Three decades of hyperspectral remote sensing of the earth: a personal view. Remote Sens Environ 113(1):S5–S16. https://doi.org/10.1016/j.rse.2007.12.014
Gross W, Queck F, Vögtli M, Schreiner S, Kuester J, Böhler J, Middelmann W (2021) A multi-temporal hyperspectral target detection experiment: evaluation of military setups. In Target and Background Signatures VII 11865:38–48. https://doi.org/10.1117/12.2597991
Hou Y, Liu G (2007) 3D set partitioned embedded zero block coding algorithm for hyperspectral image compression. Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications. International Society for Optics and Photonics 6790:679056. https://doi.org/10.1117/12.750975
Hou Y, Liu G (2008). Hyperspectral image lossy-to-lossless compression using the 3D embedded Zeroblock coding alogrithm. International Workshop on Earth Observation and Remote Sensing Applications: 1-6. https://doi.org/10.1109/EORSA.2008.4620308
Hou Y, Liu G (2008) Lossy-to-lossless compression of hyperspectral image using the improved AT-3D SPIHT algorithm. International Conference on Computer Science and Software Engineering 2:963–966. https://doi.org/10.1109/CSSE.2008.1351
Jiang Z, Pan WD, Shen H (2020) Spatially and spectrally concatenated neural networks for efficient lossless compression of hyperspectral imagery. Journal of Imaging 6(6):38. https://doi.org/10.3390/jimaging6060038
Karami A, Yazdi M, Asli, AZ (2010) Hyperspectral image compression based on tucker decomposition and discrete cosine transform. In 2010 2nd international conference on image processing theory, Tools and Applications: 122-125. https://doi.org/10.1109/IPTA.2010.5586739
Kidwai NR, Khan E, Zm-Speck RM (2016) A fast and memoryless image coder for multimedia sensor networks. IEEE Sensors J 16(8):2575–2587. https://doi.org/10.1109/JSEN.2016.2519600
Laureen C, Sacré P-Y, Dispas A, De Bleye C, Fillet M, Ruckebusch C, Hubert P, Ziemons E (2021) Pixel-based Raman hyperspectral identification of complex pharmaceutical formulations. Anal Chim Acta 1155:338361. https://doi.org/10.1016/j.aca.2021.338361
Lee HS, Younan NH, King RL (2002) Hyperspectral image cube compression combining JPEG-2000 and spectral decorrelation. IEEE International Geoscience and Remote Sensing Symposium 6:3317–3319. https://doi.org/10.1109/IGARSS.2002.1027168
Li R, Pan Z, Wang Y (2019) The linear prediction vector quantization for hyperspectral image compression. Multimed Tools Appl 78(9):11701–11718. https://doi.org/10.1007/s11042-018-6724-8
Liu R, Cai W, Li G, Ning X, Jiang Y (2021). Hybrid dilated convolution guided feature filtering and enhancement strategy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters: 1–5. https://doi.org/10.1109/LGRS.2021.3100407
Liu R, Ning X, Cai W, Li G (2021) Multiscale dense cross-attention mechanism with covariance pooling for hyperspectral image scene classification. Mob Inf Syst 2021:1–15. https://doi.org/10.1155/2021/9962057
Luo Y, Qin J, Xiang X, Tan Y, Liu Q, Xiang L (2020) Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Proc 17(1):125–135. https://doi.org/10.1007/s11554-019-00917-3
Medus LD, Saban M, Francés-VÃllora JV, Bataller-Mompeán M, Rosado-Muñoz A (2021) Hyperspectral image classification using CNN: application to industrial food packaging. Food Control 125:107962. https://doi.org/10.1016/j.foodcont.2021.107962
Mishra MK, Gupta A, John J, Shukla BP, Dennison P, Srivastava SS, Kaushik NK, Misra A, Dhar D (2019) Retrieval of atmospheric parameters and data-processing algorithms for AVIRIS-NG Indian campaign data. Current Science 116(7):1089–1100. https://doi.org/10.18520/cs/v116/i7/1089-1100
Mitran T, Sreenivas K, Janakirama Suresh KG, Sujatha G, Ravisankar T (2021) Spatial prediction of calcium carbonate and clay content in soils using airborne hyperspectral data. Journal of the Indian Society of Remote Sensing 49:1–12. https://doi.org/10.1007/s12524-021-01415-5C
Miyoshi GT, Imai NN, Tommaselli AMG, Honkavaara E, Näsi R, Moriya ÉAS (2018) Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment. Int J Remote Sens 39(15–16):4910–4930. https://doi.org/10.1080/01431161.2018.1425570
Mohan BK, Porwal A (2015) Hyperspectral image processing and analysis. Curr Sci 108(5):833–841
Morales A, Ferrer MA, Diaz-Cabrera M, Carmona C, Thomas GL (2014). The use of hyperspectral analysis for ink identification in handwritten documents. In 2014 International Carnahan Conference on Security Technology: 1-5. https://doi.org/10.1109/CCST.2014.6986980
Munmun B, Kumar SA, Praise SD (2021) Two-level band selection framework for hyperspectral image classification. Journal of the Indian Society of Remote Sensing 49(4):843–856. https://doi.org/10.1007/s12524-020-01262-w
Nadia Z, Lahdir M, Helbert D (2019) Support vector regressionbased 3D-wavelet texture learning for hyperspectral image compression. Vis Comput 36(7):1473–1490. https://doi.org/10.1007/s00371-019-01753-z
Nagendran R, Vasuki A (2020) Hyperspectral image compression using hybrid transform with different wavelet-based transform coding. Int J Wavelets Multiresolut Inf Process 18(01):1941008. https://doi.org/10.1142/S021969131941008X
Ngadiran R, Boussakta S, Sharif B, Bouridane A (2010) Efficient implementation of 3D listless SPECK. IEEE international conference on computer and communication engineering, 1–4. https://doi.org/10.1109/ICCCE.2010.5556843
Paul A, Kundu A, Chaki N, Dutta D, Jha CS (2021). Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising. Multimedia tools and applications: 1-27. https://doi.org/10.1007/s11042-021-11689-z
Penna B, Tillo T, Magli E, Olmo G (2006). A new low complexity KLT for lossy hyperspectral data compression. In 2006 IEEE International Symposium on Geoscience and Remote Sensing: 3525-3528. https://doi.org/10.1109/IGARSS.2006.904
Penna B, Tillo T, Magli E, Olmo G (2007) Transform coding techniques for lossy hyperspectral data compression. IEEE Trans Geosci Remote Sens 45(5):1408–1421. https://doi.org/10.1109/TGRS.2007.894565
Plaza A, Benediktsson JA, Boardman JW, Brazile J, Bruzzone L, Camps-Valls G, Chanussot J, Fauvel M, Gamba P, Gualtieri A, Marconcini M (2009) Recent advances in techniques for hyperspectral image processing. Remote Sens Environ 113:S110–S122. https://doi.org/10.1016/j.rse.2007.07.028
Raikwar SC, Tapaswi S, Chakraborty S (2021) Bounding function for fast computation of transmission in single image dehazing. Multimed Tools Appl 81:1–24. https://doi.org/10.1007/s11042-021-11752-9
Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879–891
Ren W, Zhang J, Ma L, Pan J, Cao X, Zuo W, Liu W, Yang MH (2018). Deep non-blind deconvolution via generalized low-rank approximation. Advances in neural information processing systems: 297-307
Ren W, Pan J, Zhang H, Cao X, Yang MH (2020) Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int J Comput Vis 128(1):240–259. https://doi.org/10.1007/s11263-019-01235-8
Rupali B (2018) Enhanced encrypted reversible data hiding algorithm with minimum distortion through homomorphic encryption. Journal of Electronic Imaging 27(2):023017. https://doi.org/10.1117/1.JEI.27.2.023017
Rupali B (2021) An improved reversible and secure patient data hiding algorithm for telemedicine applications. J Ambient Intell Humaniz Comput 12(2):2915–2929. https://doi.org/10.1007/s12652-020-02449-2
Saha S, Kondmann L, Zhu XX (2021) Deep no learning approach for unsupervised change detection in hyperspectral images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 3:311–316. https://doi.org/10.5194/isprs-annals-V-3-2021-311-2021
Sahoo RN, Ray SS, Manjunath KR (2015) Hyperspectral remote sensing of agriculture. Curr Sci 108(5):848–859
Sharma D, Prajapati YK, Tripathi R (2018) Spectrally efficient 1.55 Tb/s Nyquist- WDM superchannel with mixed line rate approach using 27.75 Gbaud PM-QPSK and PM-16QAM. Optical Engineering 57(7):076102. https://doi.org/10.1117/1.OE.57.7.076102
Sharma D, Prajapati YK, Tripathi R (2018) Success journey of coherent PM-QPSK technique with its variants: a survey. IETE Tech Rev 37(1):36–55. https://doi.org/10.1080/02564602.2018.1557569
Subrahmanyam KV, Kumar KK, Reddy NN (2019) New insights into the convective system characteristics over the Indian summer monsoon region using space-based passive and active remote sensing techniques. IETE Tech Rev 37(2):211–219. https://doi.org/10.1080/02564602.2019.1593890
Sudha VK, Sudhakar R (2013) 3D listless embedded block coding algorithm for compression of volumetric medical images. J Sci Ind Res 72:735–748
Suresh KR, Manimegalai P (2019) Near lossless image compression using parallel fractal texture identification. Biomedical Signal Processing and Control 58:101862. https://doi.org/10.1016/j.bspc.2020.101862
Tang X, Pearlman WA (2004) Lossy-to-lossless block-based compression of hyperspectral volumetric data. IEEE International Conference on Image Processing, Singapore 5:3283–3286. https://doi.org/10.1109/ICIP.2004.1421815
Tang X, Pearlman WA (2006) Three-dimensional wavelet-based compression of hyperspectral images. In hyperspectral data compression springer, Boston, MA: 273-308. https://doi.org/10.1007/0-387-28600-4_10
Tausif M, Kidwai NR, Khan E, Reisslein M, FrWF-based LMBTC (2015) Memory-efficient image coding for visual sensors. IEEE Sensors J 15(11):6218–6228. https://doi.org/10.1109/JSEN.2015.2456332
Uddin MP, Mamun MA, Hossain MA (2021) PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech Rev 38(4):377–396. https://doi.org/10.1080/02564602.2020.1740615
UmaMaheswari S, SrinivasaRaghavan V (2021) Lossless medical image compression algorithm using tetrolet transformation. J Ambient Intell Humaniz Comput 12(3):4127–4135. https://doi.org/10.1007/s12652-020-01792-8
Valsesia D, Magli E (2017) Fast and lightweight rate control for onboard predictive coding of hyperspectral images. IEEE Geosci Remote Sens Lett 14(3):394–398. https://doi.org/10.1109/LGRS.2016.2644726
Vura S, Patil P, Patil SB (2021) A study of different compression algorithms for multispectral images. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.06.175
Wang X, Tao J, Shen Y, Qin M, Song C (2018) Distributed source coding of hyperspectral images based on three-dimensional wavelet. J Indian Soc Remote Sens 46(4):667–673. https://doi.org/10.1007/s12524-017-0735-1
Wei P, Yi Zou, Lu AO (2008). A compression algorithm of hyperspectral remote sensing image based on 3-D wavelet transform and fractal. 3rd International Conference on Intelligent System and Knowledge Engineering 1: 1237–1241. https://doi.org/10.1109/ISKE.2008.4731119
Wildenstein D, George AD (2021). Towards intelligent compression of hyperspectral imagery. In 2021 IEEE international conference on electronics, Computing and Communication Technologies: 1-6. 10.1/CONECCT52877.2021.9622585
Wu J, Wu Z, Wu C (2006) Lossy to lossless compressions of hyperspectral images using three-dimensional set partitioning algorithm. Opt Eng 45(2):027005. https://doi.org/10.1117/1.2173996
Yaman D, Kumar V, Singh RS (2020) Comprehensive review of hyperspectral image compression algorithms. Opt Eng 59(9):090902. https://doi.org/10.1117/1.OE.59.9.090902
Yaman D, Kumar V, Singh RS (2021) Parallel lossless HSI compression based on RLS filter. Journal of Parallel and Distributed Computing 150:60–68. https://doi.org/10.1016/j.jpdc.2020.12.004
Yaman D, Singh RS, Parwani K, Lunagariya S, Kumar V (2021) Convolution neural network based lossy compression of hyperspectral images. Signal Process Image Commun 95:116255. https://doi.org/10.1016/j.image.2021.116255
Zhang L, Zhang L, Tao D, Huang X, Du B (2015) Compression of hyperspectral remote sensing images by tensor approach. Neurocomputing 147:358–363. https://doi.org/10.1016/j.neucom.2014.06.052
Acknowledgements
I am sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the paper.
Funding
The author received no financial support for the research, authorship, and/or publication of this article.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares that there are no conflicts of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bajpai, S. Low complexity block tree coding for hyperspectral image sensors. Multimed Tools Appl 81, 33205–33232 (2022). https://doi.org/10.1007/s11042-022-13057-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-022-13057-x