Skip to main content
Log in

Graph partitioning and visualization in graph mining: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Graph mining is a process of obtaining one or more sub-graphs and has been a very attractive research topic over the last two decades. It has found many practical applications dealing with real world problems in variety of domains like Social Network Analysis, Designing of Computer Networks, Study of Chemical Reactions, Bio Informatics, Program Flow Structures, Image Processing, Enterprise data, Sparse Matrix ordering and many more. For these applications, many graph classification and Graph Clustering algorithms are evolved. This paper presents a comprehensive survey of published work in Graph Mining by grouping them in a broad taxonomy. For each of these groups in the taxonomy, the basic concepts of the algorithms are covered in detail by mentioning the contributions of various authors to the basic concepts of each group. Furthermore, common issues in graph mining algorithms, such as clustering, partitioning, visualization of graphs, are also elaborated. Standard datasets available for graph mining are stated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Abello J, van Ham F, Krishnan N (2006) Ask-graph view: a large scale graph visualization system. IEEE Trans Visualization and Comput Graph 12(5):669–676

    Article  Google Scholar 

  2. Abnar A, Takaffoli M, Rabbany R, Zaiane OR (2014) SSRM: structural social role mining for dynamic social networks advances in social networks analysis and mining (ASONAM). IEEE/ACM international conference 289-296

  3. Allegrograph. (n.d.) http://www.franz.com/agraph/allegrograph/

  4. Alwahaishi S, Martinovic J, Snasel V, Kudelka M (2011) Analysis of the DBLP Publication Classification Using Concept Lattices. ISBN: 978–80–248-2391. 132–139

  5. Andreev K, Racke H (2006) Balanced graph partitioning. Theory Computation System 39(6):929–939

    Article  MathSciNet  MATH  Google Scholar 

  6. Auber D, Chiricota Y, Jourdan F, Melancon G (2003) Multiscale visualization of Small world networks. Proc IEEE Ninth Conf Information Visualization (InfoVis):75–78

  7. AUTHOR (n.d.) http://www.hypergraphdb.org/

  8. Ayati M, Erten S, Mark Chance R, Koyutrk M (2015) MOBAS: identification of disease-associated protein sub networks using modularity-based scoring. EURASIP J Bioinf Systems Bio 2015:7

    Article  Google Scholar 

  9. Bansal N, Blum A, Chawla S (2004) Correlation clustering. Mach Learn 56(1–3):89–113

    Article  MathSciNet  MATH  Google Scholar 

  10. Bapodra M (2009) Chemical Reaction Rate Analysis using Graph Transformations. CO3120 Computer Science Project, Final Report, submitted to the University of Leicester in Partial Fulfillment for the degree of Bachelor of Science, Department of Computer science, University of Leicester 1–89

  11. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  MATH  Google Scholar 

  12. Barnad ST, Small I (1990) Animation at the Interface: the art of human computer Interface design 251-267

  13. Batagelj V, Brandenburg FJ, Didimo W (2011) Visual analysis of large graphs using (X, Y)- clustering and hybrid visualizations. IEEE Trans Knowl Data Eng 17(11):1587–1598

    Google Scholar 

  14. Benkö G, Flamm C, Stadler PF (2003) A graph-based toy model of chemistry. J Chem Inf Comput Sci 43:1085–1093

    Article  Google Scholar 

  15. Berlingerio M (2009) Graph and network data: mining the temporal dimension. IMT Institute for Advanced Studies, Lucca

    Google Scholar 

  16. Beucher S, Lantuéjoul C (1979) Use of watersheds in contour detection. in International Workshop on Image Processing. Real-Time Edge and Motion Detection/Estimation, Rennes

    Google Scholar 

  17. Bolz J, Farmer I, Grinspun E, Schrooder P (2003) Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans Graphics (TOG) 22(3):917–924

    Article  Google Scholar 

  18. Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the social sciences. Science 323:892–895

    Article  Google Scholar 

  19. Brath R, Jonker D (n.d.) Graph Analysis and Visualization: Discovering Business Opportunity in Linked Data. John Wiley & Sons, ISBN-10: 1118845846, ISBN-13: 978–1118845844

  20. Bui T, Jones C (1993) A heuristic for reducing fill in sparse matrix factorization. In6th SIAM Conf. Parallel processing for scientific Computing 445–452

  21. Bulò SR, Pelillo M (2013) A game-theoretic approach to hyper graph clustering. IEEE Trans Pattern Anal Mach Intell 35(6):1312–1327

    Article  Google Scholar 

  22. Callut J, Fraisse K, Saerens M, Dupont P (2008) Semi-supervised classification from discriminative random walks. Lecture notes in artificial intelligence no. 5211, springer 162-177

  23. Callut J, Françoisse K, Saerens M, Dupont P (2008) Semi-supervised Classification from Discriminative Random Walks. Lecture Notes in Artificial Intelligence No. 5211, Springer 162–177

  24. Carpendale GS (2003) Edge Lens: An Interactive Method For Managing Edge Congestion In Graphs. Information Visualization INFOVIS 2003. IEEE Symposium 51–58

  25. Chao-Wei O, Ranka S (1999) Parallel incremental graph partitioning. IEEE Transactions on Parallel and Distributed Systems 8(8):884–896

    Article  Google Scholar 

  26. Chartrand G, Oellermann OR (1993) Applied and algorithmic graph theory. McGraw-Hill, New York

    Google Scholar 

  27. Charu Aggarwal C (n.d.) Managing and Mining Graph Data. Springer 2010 edition, ISBN-10: 1441960449, ISBN-13: 978–1441960443

  28. Charu Aggarwal C, Wang H, (n.d.) Managing and Mining Graph Data (Advances in Database Systems). Springer 2010 edition, ISBN-10: 1441960449, ISBN-13: 978–144196044

  29. Chaw Wei O, Ranka S (1997) Parallel Incremental Graph Partitioning. IEEE transactions on Parallel and Distributed Systems 8:884–896

    Article  Google Scholar 

  30. Chen Y, Fonseca F (2004) A bipartite graph co-clustering approach to ontology mapping

  31. Cheng C-K, Wei Y-CA (1991) An improved two-way partitioning algorithm with STABLE performance. IEEE Transactions on Computer Aided Design 10(12):1502–1511

    Article  Google Scholar 

  32. Clique BD (2008) Matrices for Statistical Graph Decomposition and Paramenite Matrices. In D. A. McAllester and P. Myllymaki, editors AUAI Press 26–33

  33. Cloudgraph. (n.d.) http://www.cloudgraph.com/

  34. Corradini A, Montanari U, Rossi F, Ehrig H, Heckel R, Löwe M (1997) Algebraic Approaches To Graph Transformation. Part I: Basic concepts and double pushout approach, in: G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformation, Volume 1: Foundations, World Scientific 163–246

  35. David H (1987) Statecharts: a visual formalism for complex systems. Science Computer Programming 8:231–274

    Article  MathSciNet  MATH  Google Scholar 

  36. Delest M, Bordeaux F, Fedou JM, Antipolis NS, Jean-Marc F, Melancon G, Montpellier F (2006) A Quality Measure for Multi-Level Community Structure. SYNASC 8th International Conference

  37. Dey S (n.d.) Graph Theory with Applications. Shroff, 1st Edition, ISBN-10: 9350236796, ISBN-13: 978–9350236796

  38. Dhillon I, Guan Y, Kulis B (2005) A Fast Kernel-based Multilevel Algorithm for Graph Clustering. Proceedings of The 11th ACM SIGKDD, Chicago, IL, 21–24

  39. Diane Cook J, Lawrence Holder B, (n.d.) Mining Graph Data. Wiley-Blackwell, ISBN-10: 0471731900, ISBN-13: 978–0471731900

  40. Dias CR, Ochi LS (2003) Efficient evolutionary algorithms for the clustering problem. L:983-988

  41. Dias CR, Ochi LS (2003) Efficient evolutionary algorithms for the clustering problem in directed graphs. Proceedings of the 2003 IEEE congress on evolutionary computation 1:983-988

  42. Duchenne O, Bach F, Kweon IS, Ponce J (2011) A tensor-based algorithm for high-order graph matching. IEEE Trans Pattern Anal Mach Intell 33(12):2383–2395

    Article  Google Scholar 

  43. Eades P, Feng QW (1996) Multilevel visualization of clustered graphs. Graph drawing. Proc. 4th Int. Symp. GD 101–112

  44. Eades P, Feng Q (1997) Multilevel visualization of clustered graphs. Proc. symposium on graph drawing 101-112

  45. Eades P, Huang ML (2000) Navigating clustered graphs using force-directed methods. Graph Algorithms Appl 4:157–181

    Article  MATH  Google Scholar 

  46. Eades P, Feng QW, Lin X (1996) Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Proceedings of the symposium on graph drawing 113–128

  47. Ellis G, Dix A (2007) Taxonomy of clutter reduction for information visualization. IEEE Trans Vis Comput Graph 13(6):1216–1223

    Article  Google Scholar 

  48. Elmacioglu E, Lee D (n.d.) On Six Degrees of Separation in DBLP-DB and More

  49. Eppstein D, Goodrich MT, Meng JY (2007) Confluent Layered Drawings AlgorithMica 47(4):439–452

  50. Estrada E (2013) Chemical Graph Theory. https://www.researchgate.net/publication/258021291, Chapter. 1–25

  51. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. Proc. ACM Conf. Applications, technologies, architectures, and protocols for computer Communication 251–262

  52. Faloutsos C, McCurley KS, Tomkins A (2004) Fast discovery of connection subgraphs. Proc ACM 10th Int’lConf Knowledge discovery and data mining (SIGKDD) 118-127

  53. Fatat GD, Berthold MR (2005) High performance subgraph Mining in Molecular Compounds. HPCC:866–877

  54. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image Segmentation. Int J Comput Visual 59(2):167–181

    Article  MATH  Google Scholar 

  55. Feng QW, Cohen RF, Eades P (1995) How to draw a planar clustered graph. Proceedings of the first annual international conference on computing and combinatory, 21–30

  56. Fiduccia CM, Mattheyses RM (1982) A linear-time heuristic for improving network partitions. In 19th design automation conference (pp 175–181). IEEE

  57. Filament. (n.d.) http://filament.sourceforge.net

  58. Finocchi I (2002) Hierarchical decompositions for visualizing large graphs. PhD diss., PhD thesis, Universita degli Studi di Roma “La Sapienza

  59. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174

  60. Takes FW (2014) Algorithms for analyzing and mining real-world graphs. PhD diss., Leiden University

  61. Gao S, Li MM (2014) Research of data graph mining based on telecommunication customers. Appl Mech Mater 443. Trans Tech Publications Ltd

  62. Garbers J, Promel HJ, Steger A (1990) Finding clusters in VLSI circuits. In 1990 IEEE International Conference on Computer-Aided Design 1990 Jan 1 (pp 520–521). IEEE Computer Society

  63. Garey MR, Johnson DS (1983) Crossing number is NP-complete. SIAM J Alg Discr Meth 4(3):312–316

  64. Gentilini R, Piazza C, Policriti A (2003) Computing strongly connected components in a linear number of symbolic steps. InSODA 3:573–582

  65. Giraph. (n.d.) https://github.com/apache/giraph

  66. Golub GH, Van Loan CF (1996) Matrix computations. John Hopkins University Press Baltimore, Baltimore

    MATH  Google Scholar 

  67. Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. Proc. 16th ACM SIGKDD Int’l Conf. Knowledge discovery and data mining 1019-1028

  68. G-store. (n.d.) http://g-store.sourceforge.net/

  69. Guo P, Wang L, Chen P (2014) A performance modelling and optimization analysis tool for sparse matrix-vector multiplication on GPUs. Parallel and Distributed Systems, IEEE Trans 25(5):1112–1123

    Article  Google Scholar 

  70. Guo G, Wang H, Bell D, Bi Y, Greer K (n.d.) KNN Model-Based Approach in Classification. 1–12

  71. Hagen L, Kahng A (1992) A New Approach To Effective Circuit Clustering. In: Proceedings of IEEE International Conference on Computer Aided Design 422–427

  72. Han J, Yan X, Yu PS (2006) Mining and searching graphs and structures. Proceedings of 12th ACM conference on knowledge discovery and data mining (SIGKDD’2006)

  73. Hans Othmer G (1981) A graph-theoretic analysis of chemical reaction networks. Department of Mathematics University of Utah Salt Lake City, Utah 84112:1–36

    Google Scholar 

  74. Haq A (2015) Applying graph mining techniques to solve complex software engineering problems. Kent State University

  75. Harchaoui Z, Bach F (n.d.) Image Classification with Segmentation Graph Kernels. 1–6

  76. Heath MT, Raghavan P (1994) A Cartesian nested dissection algorithm. Technical report UIUCDCS-R-92-1772, Department of Computer Science, University of Illinois, Urbana, IL 61801, 1992. To appear in SIAM journal on matrix analysis and applications

  77. Hendrickson B, Leland R (1993) A multilevel algorithm for partitioning graphs. Technical report SAND93-1301, Sandia National Laboratories

  78. Hendrickson B, Leland R (1995) A multilevel Algorithmfor partitioning graphs. Proc. Supercomputing

  79. Ho J, Hong SH (2006) Drawing clustered graphs in three dimensions

  80. Holten D (2006) Visualization of adjacency relations in hierarchical data. IEEE Trans Vis Comput Graph 12(5):741–748

    Article  Google Scholar 

  81. Horak Z, Kudelka M, Snasel V, Abraham A, Rezankova H (2011) Forcoa.NET: An Interactive Tool for Exploring the Significance of Authorship networks in dblp data. ieee computer society, IEEE

  82. Horak Z, Kudelka M, Snasel V, Abraham A (2011) Forcoa.NET: An Interactive Tool for Exploring the Significance of Authorship Networks in DBLP Data. International Conference on Computational Aspects of Social Networks (CASON) 978–1–4577-1133-6/11/ IEEE, 261–266

  83. Horton. (n.d.) http://research.microsoft.com/en-us/projects/ldg/

  84. Huang DH, Kahng AB (1995) When clusters meet partitions: new density-based methods for circuit decomposition. In: Proc Eur Conf Des Test 60–64

  85. Huang ML, Nguyen QV (2007) A space efficient clustered visualization of large graphs. Proc. fourth Int’l Conf. Image and graphics 920-927

  86. Inderjit Dhilon S, Guan Y, Kuli B (2007) Weighted graph cuts without eigenvectors: a multilevel approach. IEEE Trans Pattern Anal Mach Intell 29(11):1944–1957

    Article  Google Scholar 

  87. Jalali M, Mustapha N, Sulaiman MN, Mamat A (2010) Expert systems with applications. Elsevier 37:6201–6212

    Google Scholar 

  88. JayantKulkarni S (2017) Graph theory: applications to chemical engineering and chemistry. Galore Int J Appl Sci Human

  89. Jose Rodrigues F Jr, Pan J-Y, Agma Traina JM, Traina C Jr, Faloutsos C (2013) Large graph analysis in the Gmine system. IEEE Trans Knowl Data Eng 25:106–119

    Article  Google Scholar 

  90. Kang U, Meeder B, Papalexakis EE, Faloutsos C (2014) Heigen: spectral analysis for billion-scale graphs. Knowl Data Eng IEEE Trans 26(2):350–362

    Article  Google Scholar 

  91. Kannan R, Vempala S, Vetta A (2004) On Clustering’s good, bad and spectral. J ACM 51(3):497–515

    Article  MathSciNet  MATH  Google Scholar 

  92. Kappes JH, Speth M, Andres B, Reinelt G, Schn C (2011) Globally optimal image partitioning by multi-cuts. In: Proc. energy minim. Methods computation. Vis. Pattern Recognition 31–44

  93. Karpys G, Kumar V (1995) Metis: unstructured graph partitioning and sparse matrix ordering system. Version 2.0, University of Minnesota

  94. Karypis G, Kumar V (1995) Multilevel graph partitioning schemes. Proc IEEE/ ACM conf Parallel processing 113–122

  95. Karypis G, Kumar V (1998) Multilevel algorithms for multi-constraint graph partitioning. Supercomputing 1998. SC98. IEEE/ACM conference 28–28

  96. Kashima H, Inokuchi A (2002) Kernels for graph classification. ICDM, Workshop on Active Mining

  97. Kazimianec M, Augsten N (2013) Clustering with proximity graphs: exact and efficient algorithms. International Journal of Knowledge based Organizations 3:84–104

    Article  Google Scholar 

  98. Kernighan BW, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49(2):291–307

    Article  MATH  Google Scholar 

  99. Ketkar NS, Holder LB, Cook OJ (2009) Empirical comparison of graph classification algorithms. IEEE

  100. Khuller S, Saha B (2009) On finding dense subgraphs. In: Proc. automata languages Program 597–608

  101. Kim S (2003) Graph theoretic sequence clustering algorithms and their applications to genome comparison. in: J.T.L. Wang, C.H. Wu, P.P. Wang (Eds.), Computational Biology and Genome Informatics, World Scientific Publishing Company 81–116

  102. Kim S, Nowozin S, Kohli P, Yoo CD (2011) Higher-order correlation clustering for image Segmentation. In: Proc. Adv. Neural Inf. Process. System 1530–1538

  103. Kramer S, Raedt. LD (2001) Feature Construction With Version Spaces For Biochemical Application. In Proc. of the 18th ICML

  104. Kraus JM, Palm G, Kestler HA (2007) On the robustness of semi supervised hierarchical graph clustering in functional genomics

  105. Krishnamurthy V, Faloutsos M, Chrobak M, Lao L, Cui JH, Percus AG (2005) Reducing large internet topologies for faster simulations. IFIP Networking

  106. Kudelka M, ZdenekHorak VS, Abraham A (2010) Social network reduction based on stability. IEEE Computer Society, IEEE

  107. Kudelka M, Horak Z, Snasel V, Abraham A (2010) Social Network Reduction Based on Stability. International Conference on Computational Aspects of Social Networks 510–514

  108. Laukens K, Naulaerts S, VandenBerghe W (2014) Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Proteomics 15(5–6):98–196

    Google Scholar 

  109. Le TV, Kulikowaski CA, Muchnik IB (2008) Coring method for clustering a graph. In: Proceedings of IEEE

  110. Lee J, Cho M, Lee KM (2011) Hyper graph matching via reweighted random walks. In proc. IEEE Conf. Computation visualization pattern recognition 1633–1640

  111. Leskovec J, Faloutsos C (2006) Sampling from large graphs. Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining 631–636

  112. Ley M (2009) DBLP- some lessons learned. VLDB, August

  113. Lin F, Cohen WW (2010) Power iteration clustering. In proc. Int. Conf. Mach. Learn 10:655–662

    Google Scholar 

  114. Liu W, Li Z, Sun S, Gupta M, (2021) Design a novel target to improve positioning accuracy of autonomous vehicle navigation system in GPS denied environments IEEE transactions on industrial informatics

  115. Lombaert Herve, Yiyong Sun, Leo Grady, Chenyang Xu (2005) A Multilevel Banded Graph Cuts Method for Fast Image Segmentation. Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV, 1550–5499/05 $20.00 © 2005 IEEE’05)

  116. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed graph lab: a framework for machine learning and data mining in the cloud. Proc VLDB Endowment 5:716–727

    Article  Google Scholar 

  117. Lowe DG (2004) Distinctive image features from scale-invariant Keypoints. Int J Comput Visual 60(2):91–110

    Article  Google Scholar 

  118. Ma Y, Li Z, Malekian R, Zheng S, Sotelo MA (2020) A Novel Multimode Hybrid Control Method for Cooperative Driving of an Automated Vehicle Platoon. IEEE Internet Things J 8:5822–58-38

    Article  Google Scholar 

  119. Macskassy S, Provost F (2007) Classification in networked data: a toolkit and a univariate case study. J Mach Learn Res 8:935–983

    Google Scholar 

  120. Malcolm J, Rathi Y, Tannenbaum A (2007) Graph Cut Segmentation with Nonlinear Shape Priors. IEEE international conference on ICIP 365–368.

  121. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: Proc. ACM SIGMOD Int Conf Manage Data 135–146

  122. Mancoridis S, Mitchell BS, Chen Y, Gansner ER (1999) Bunch: a clustering tool for the recovery and maintenance of software system structures. Software maintenance. 1999.(ICSM’99) proceedings. IEEE international conference 50–59

  123. Mansurul Bhuiyan A, Mohammad Al Hasan (2013) An iterative map reduce based frequent subgraph mining algorithm. Trans Knowl Data Eng

  124. MarziehAyati SE, Mark Chance R, Koyutrk M (2015) MOBAS: identification of disease-associated protein sub networks using modularity-based scoring. J Bioinf Systems Bio

  125. Meysman P, Sanchez-Rodrguez A, Fu Q, Marchal K, Engelen K (2013) Expression divergence between Escherichia Coli and Salmonella EntericaSerovarTyphimuriumReflects their lifestyles. Mol Biol Evol 30(6):1302–1314

    Article  Google Scholar 

  126. Meysman P, Saeys Y, Sabaghian E, Bittremieux W, Van de Peer Y, Goethals B, Laukens K (2016) Mining the enriched subgraphs for specific vertices in a biological graph. IEEE/ACM, Trans Comput Bio Bioinf

  127. Meysman P, YvanSaeys ES, WoutBittremieux YVde P, Goethals B, Laukens K (2016) Mining the enriched subgraphs for specific vertices in a biological graph. IEEE/ACM Transactions On Computational Biology And Bioinformatics

  128. Milenkovic T, Przulj N (2008) Uncovering biological network function via Graphlet degree signatures. Cancer Informat 6:257–273

    Article  Google Scholar 

  129. Motoda H (2006) What can we do with graph-structured data a data mining perspective. Springer 1-2

  130. Mukherjea S, Foley JD, Hudson SE (1995) Visualizing complex hypermedia networks through multiple hierarchical views

  131. Newbery FJ (1989) Edge connection: a method for clustering directed graphs. Proceeding of 2nd international workshop on software configuration management 76-85

  132. Newman M (2005) A measure of betweenness centrality based on random walks. Soc Networks 27:39–54

    Article  Google Scholar 

  133. Newman M (2006) Modularity and community structure in networks. Proc Nat Acad Sci 103(23):8577–8582

    Article  Google Scholar 

  134. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process System 2:849–856

    Google Scholar 

  135. Nour-Omid B, Raefsky A, Lyzenga G (1986) Solving finite element equations on concurrent computers. In: Noor AK (ed) . American Soc. Mech. Eng, pp 291–307

    Google Scholar 

  136. Orientdb. (n.d.) http://www.orientdb.org/

  137. Ozaki T, Ohkawa T (2008) Mining correlated subgraphs in graph databases. PAKDD 272-283

  138. Papadimitriou C, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. Dover, Mineola

    MATH  Google Scholar 

  139. Peng J, Xiao Z, Chen C, Yang W (2016) Iterative Sparse Matrix-Vector Multiplication on In-Memory Cluster Computing Accelerated by GPUs for Big Data. IEEE 978–1–5090-4093-3/16/, ©2016

  140. Phan D, Xiao L, Yeh R, Hanrahan P, Winograd T (2005) Flow map layout. IEEESymposium on Inf Visual INFOVIS:219–224

  141. Phoebus. (n.d.) https://github.com/xslogic/phoebus

  142. Ponnusamy R, Mansour N, Choudhary A, Fox GC (1993) Graph contraction and physical optimization methods: a quality-cost trade off for mapping data on parallel computers. In International Conference of Supercomputing

  143. Porikli F (2013) Integral Histogram: A Fast Way To Extract Histograms In Cartesian Spaces in Proc IEEE Conf Computation Vis Pattern Recognition 1

  144. Pothen A, Horst Simon D, Liou K-P (1990) Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal of Matrix Analysis and Applications 11(3):430–452

    Article  MathSciNet  MATH  Google Scholar 

  145. Pothen A, Simon HD, Liou KP (1990) Partitioning sparse matrices with Eigen- vectors of graphs. SIAM J Matrix Anal 11:430–452

    Article  MathSciNet  MATH  Google Scholar 

  146. Preciado V, Jadbabaie A (2013) Moment-based spectral analysis of large-scale networks using local structural information. IEEE/ACM Trans Netw 21(2):373–382

    Article  Google Scholar 

  147. Przulj N (2007) Biological network comparison using Graphlet degree distribution. Bioinformatics 23(2):e177–e183

    Article  Google Scholar 

  148. Rahman M, Bhuiyan MA, Al Hassan M (2014) GRAFT: an efficient Graphlet counting method for large graph analysis. IEEE Trans Pattern Anal Mach Intell 26(10):2466–2478

    Google Scholar 

  149. Ramon J (n.d.) Graph mining declarative languages and artificial intelligence group. K. U. Leuven, Belgium

  150. Rehman SU, Khan AU, Khan AU (n.d.) Graph Mining: A Survey of Graph Mining Techniques. ©2012 IEEE 978–1–4673-2430-4112

  151. Risch JS, Rex DB, Dowson ST, Walters TB, May RA, Moon BD (2006) The starlight information visualizations of web content. Int J Hum Comput Stud 53(5):695–714

    Google Scholar 

  152. Rodrigues Jr. JF, Tong H, Traina AJM, Faloutsos C, Leskovec J (2006) GMine: A System for Scalable, Interactive Graph Visualization and Mining. Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB) 1195–1198

  153. Rossell’O F, Valiente G (2005) Chemical graphs, chemical reaction graphs, and chemical graph transformation. Elsevier, Electronic Notes in Theoretical Computer Science 127:157–166

    Article  Google Scholar 

  154. Sablowski R, Frick A (n.d.) Automatic Graph Clustering. Proc. of 4th Symposium on Graph Drawing 395–400

  155. Saha B, Hoch A, Khuller S, Raschid L, Zhang XN (2010) Dense subgraphs with restrictions and applications to gene annotation graphs. In proc. res. Computation Mol Biol 456–472

  156. Salihoglu S, Widom J (2013) GPS: a graph processing system. In: Proc. 25th Int. Conf. Sci. Statist. Database Manage 22:1:22–12

    Google Scholar 

  157. Schaeffer SE (2007) Graph clustering. Computer Science Review 1:27–64

    Article  MATH  Google Scholar 

  158. Schaeffer SE (2007) Survey graph clustering. Else wire 27–64

  159. Schenker A, Last M, Bonke H, Kandel A (2003) Classification of web documents using a graph mode. Proceedings of the Seventh International Conference on Document Analysis and Recognition

  160. Seo S, Yoon EJ, Kim J, Jin S, Kim JS, Maeng S (2010) Hama: an efficient matrix computation with the mapreduce framework. In cloud computing technology and science (CloudCom), 2010 IEEE second international conference on. IEEE 721–726

  161. Shao B, Wang H, Li Y (2013) Trinity: a distributed graph engine on a memory cloud. In: Proc. ACM SIGMOD Int. Conf. Manage. Data 505–516

  162. Shi J, Malik J (1997) Normalized cuts and image Segmentation. In IEEE Conference on Computer Vision and Pattern Recognition 73:1–737

    Google Scholar 

  163. Shi J, Malik J (2000) Normalized cuts and image Segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  164. Shiy J, Malik J (n.d.) Normalized Cuts and Image Segmentation. Supported by (ARO) DAAH04–96-1-0341

  165. Snow D, Viola P, Zabih R (2000) Exact voxel occupancy with graph cuts. In IEEE Conference on Computer Vision, and Pattem Recognition 1:345–352

    Google Scholar 

  166. Stephan Barnad T, Horst Simon D (1994) Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems. Concurrency: Practice and Experience 6(2):101–117

    Article  Google Scholar 

  167. Sugiyama K, Misue K (1991) Visualization of structural information: automatic drawing of compound digraphs. IEEE Trans Syst Man Cybern 21(4):876–892

  168. Swell M (2009) Kernel methods

  169. Tony Chan F, John Gilbert R, Teng S-H (1994) Geometric spectral partitioning. Technical Report in Preparation

  170. van Ham F, van Wijk JJ (2004) Interactive visualization of Small world graphs. Proc. IEEE symposium information visualization (information visualization) 199-206

  171. van Ham F, van Wijk JJ, Eindhoven TU (2004) Interactive visualization of Small world graphs. Information visualization. 2004, INFOVIS 2004. IEEE symposium 199–206

  172. Veksler O (2008) Star shape prior for graph-cut image Segmentation. Proceeding of the 10th European conference on computer vision

  173. Vertexdb. (n.d.) http://www.dekorte.com/projects/opensource/vertexdb/

  174. Vitter JS (2001) External memory algorithms and data structures: dealing with massive data. ACM Computing Survey 33(2):209–271

    Article  Google Scholar 

  175. Wang L (2006) Comparison for edge detection of Colony image. IJCSNS, Int J Comput Sci Netw Security 6(9A)

  176. Wang S, Xiao CL, Liu W (2006) Parallel Enumeration of Custom Instructions Based on Multi depth Graph Partitioning. IEEE Embedded Systems 1–4

  177. Wattenberg M (2006) Visual exploration of multivariate graphs. Proceedings of the SGCHI conference on human factors in computing system 811-819

  178. Watts DJ, Strogatz SH (1998) Collective dynamics of Small- world’ networks. Nature 393:440–442

    Article  MATH  Google Scholar 

  179. Watts DJ, Worlds S (2003) The dynamics of networks between order and randomness. Princeton Univ. Press

  180. Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics (Oxford, England) 22(9):115–123

    Article  Google Scholar 

  181. Wernicke S, Rasche F (2006) Fanmod: a tool for fast network motif detection. Bioinformatics 22(9):1152–1153

    Article  Google Scholar 

  182. Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection Bioinf7ormatics. (Oxford, England) 22(9):115–123

  183. Westbrook JD, Fitzgerald PMD, The PDB (n.d.) Format, Mmcif Formats And Other Data Formats

  184. Wu X, Wang Y (2008) Interactive For reground/Background Segmentation Based on Graph Cut. Congress on Image and Signal processing 692–696

  185. Wu MQY, Faris R, Ma K-L (2015) Visual exploration of academic career paths. 2013, IEEE/ ACM International Conference on Advances in Social Networks Analysis and Mining 779–786

  186. Xuan J, Lu J, Zhang G, Luo X (2015) Topic model for graph mining. IEEE Transactions on Cybernetics 2168–2267

  187. Yang X, Parthasarathy S, Sadayappan P (2011) Fast sparse matrix-vector multiplication on Gpus: implications for graph mining. Proceedings of the VLDB Endowment 4(4):231–242

    Article  Google Scholar 

  188. Stasko J, Yi JS, Kang Y n, Jacko JA (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph 13(6):1224–1231

    Article  Google Scholar 

  189. Yi F, Moon I, Segmentation I (2012) A Survey of Graph-cut Methods. 2012 International Conference on Systems and Informatics (ICSAI 2012), 978–1–4673-0199 /12©2012 IEEE, 1936–1941

  190. Yu Z, Xu M, Gao Z (2011) Biomedical image segmentation via constrained graph cuts and presegmentation. International conference of the IEEE on EMBC 5714-5717,

  191. Yuri Y Marie-Pierre B Jolly Interactive (2001) Graph Cuts for Optimal Boundary &Region Segmentation of Objects in N-D Images. 0–7695–1143-0/01

  192. Zass R, Shashua A (2008) Probabilistic graph and hyper graph matching. In proc. IEEE Conf. Comput. Vis. Pattern Recog. 1–8

  193. Zhao P, Yu X (2007) Mining Closed Frequent Free Trees in Graph Databases. Proceeding of Database Systems for Advance Application 91–102

  194. Zhou D, Huang J, Schölkopf B (2006) Learning with hyper graphs: Clustering, classification, and embedding. In: Proc. Adv. Neural Inf. Process. System 1601–1608

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati A. Bhavsar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, S.A., Patil, V.H. & Patil, A.H. Graph partitioning and visualization in graph mining: a survey. Multimed Tools Appl 81, 43315–43356 (2022). https://doi.org/10.1007/s11042-022-13017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13017-5

Keywords

Navigation