Skip to main content
Log in

A gray level indicator-based nonlinear diffusion equation for the removal of random-valued impulse noise

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a nonlinear diffusion equation with two diffusivities to restore images corrupted by random-valued impulse noise. A Perona–Malik type diffusivity is utilized for anisotropic diffusion and a gray level based diffusivity called gray level indicator is proposed to estimate the amplitude of the noise. Then the proposed equation has a large diffusion coefficient for homogeneous regions and regions corrupted by large impulse noise. Conversely, it has a small diffusion coefficient for regions with edges, fine details, as well as regions corrupted by small impulse noise. The gray level indicator is constructed as the square of the difference between the noisy image and a reference image deduced from median-type filters. The new equation is able to remove small random-valued impulse noise that is difficult to be detected. A robust stopping criteria based on the complexity of the restored image and the noise level is proposed. Numerical experiments show that it outperforms PDE-based methods and nonlocal methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://sipi.usc.edu/database/database.php

References

  1. Adam T, Paramesran R, Mingming Y, Ratnavelu K (2021) Combined higher order non-convex total variation with overlapping group sparsity for impulse noise removal. Multimed Tools Appl 80(12):18503–18530

    Article  Google Scholar 

  2. Andreadis I, Louverdis G (2004) Real-time adaptive image impulse noise suppression. IEEE Trans Instrum Meas 53(3):798–806

    Article  MATH  Google Scholar 

  3. Arya K, et al. (2020) A new fuzzy rule based pixel organization scheme for optimal edge detection and impulse noise removal. Multimed Tools Appl:79

  4. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations, vol. 147 Springer Science & Business Media

  5. Bresson X, Chan TF (2008) Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl Imaging 2 (4):455–484

    Article  MathSciNet  MATH  Google Scholar 

  6. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on, vol. 2, pp. 60–65. IEEE

  7. Catté F., Lions PL, Morel JM, Coll T (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29(1):182–193

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan TF, Shen JJ (2005) Image processing and analysis: variational, PDE, wavelet, and stochastic methods, vol. 94. Siam

  9. Chen HC, Wang WJ (2009) Efficient impulse noise reduction via local directional gradients and fuzzy logic. Fuzzy Sets Syst 160(13):1841–1857

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen T, Wu HR (2001) Adaptive impulse detection using center-weighted median filters. IEEE Signal Process Lett 8(1):1–3

    Article  Google Scholar 

  11. Chen J, Zhan Y, Cao H, Xiong G (2019) Iterative grouping median filter for removal of fixed value impulse noise. IET Image Process 13(6):946–953

    Article  Google Scholar 

  12. Chen Y, Zhang Y, Shu H, Yang J, Luo L, Coatrieux JL, Feng Q (2018) Structure-adaptive fuzzy estimation for random-valued impulse noise suppression. IEEE Trans Circuits Syst Video Technol 28(2):414–427

    Article  Google Scholar 

  13. Dong Y, Chan RH, Xu S (2007) A detection statistic for random-valued impulse noise. IEEE Trans Image Process 16(4):1112–1120

    Article  MathSciNet  Google Scholar 

  14. Goel N, Kaur H, Saxena J (2020) Modified decision based unsymmetric adaptive neighborhood trimmed mean filter for removal of very high density salt and pepper noise. Multimed Tools Appl 79(27):19739–19768

    Article  Google Scholar 

  15. Gonzalez RC, Woods RE (2002) Digital image processing second edition Beijing: Publishing House of Electronics Industry, 455

  16. Guo Z, Sun J, Zhang D, Wu B (2012) Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Trans Image Process 21(3):958–967

    Article  MathSciNet  MATH  Google Scholar 

  17. Hosseini H, Hessar F, Marvasti F (2015) Real-time impulse noise suppression from images using an efficient weighted-average filtering. IEEE Signal Process Lett 22(8):1050–1054

    Article  Google Scholar 

  18. Hosseini H, Marvasti F (2013) Fast restoration of natural images corrupted by high-density impulse noise. EURASIP J Image Video Process 2013(1):15

    Article  Google Scholar 

  19. Hsieh MH, Cheng FC, Shie MC, Ruan SJ (2013) Fast and efficient median filter for removing 1–99% levels of salt-and-pepper noise in images. Eng Appl Artif Intell 26(4):1333–1338

    Article  Google Scholar 

  20. Hwang H, Haddad RA (1995) Adaptive median filters: new algorithms and results. IEEE Trans Image Process 4(4):499–502

    Article  Google Scholar 

  21. Ibrahim H, Kong NSP, Ng TF (2008) Simple adaptive median filter for the removal of impulse noise from highly corrupted images. IEEE Trans Consum Electron 54(4):1920–1927

    Article  Google Scholar 

  22. Lee CS, Kuo YH, Yu PT (1997) Weighted fuzzy mean filters for image processing. Fuzzy Sets Syst 89(2):157–180

    Article  Google Scholar 

  23. Liu L, Chen CP, Zhou Y, You X (2015) A new weighted mean filter with a two-phase detector for removing impulse noise. Inf Sci 315:1–16

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu J, Ni A, Ni G (2020) A nonconvex l1(l1l2) model for image restoration with impulse noise. J Comput Appl Math 112934:378

    Google Scholar 

  25. Luo W (2005) A new efficient impulse detection algorithm for the removal of impulse noise. IEICE Transactions on Fundamentals of Electronics. Commun Comput Inf Sci 88(10):2579–2586

    Google Scholar 

  26. Luo W (2006) An efficient detail-preserving approach for removing impulse noise in images. IEEE Signal Process Lett 13(7):413–416

    Article  Google Scholar 

  27. Meng X, Lu T, Min F, Lu T (2021) An effective weighted vector median filter for impulse noise reduction based on minimizing the degree of aggregation. IET Image Process 15(1):228–238

    Article  Google Scholar 

  28. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vis 20(1-2):99–120

    Article  MathSciNet  MATH  Google Scholar 

  29. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  30. Roy A, Singha J, Manam L, Laskar RH (2017) Combination of adaptive vector median filter and weighted mean filter for removal of high-density impulse noise from colour images. IET Image Process 11(6):352–361

    Article  Google Scholar 

  31. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Phys D: Nonlinear Phenom 60(1-4):259–268

    Article  MathSciNet  MATH  Google Scholar 

  32. Schulte S, Nachtegael M, De Witte V, Van der Weken D, Kerre EE (2006) A fuzzy impulse noise detection and reduction method. IEEE Trans Image Process 15(5):1153–1162

    Article  Google Scholar 

  33. Shen J, Chan TF (2002) Mathematical models for local nontexture inpaintings. SIAM J Appl Math 62(3):1019–1043

    Article  MathSciNet  MATH  Google Scholar 

  34. Shi K, Dong G, Guo Z (2020) Cauchy noise removal by nonlinear diffusion equations. Comput Math with Appl 80(9):2090–2103

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi K, Guo Z, Dong G, Sun J, Zhang D, Wu B (2015) Salt-and-pepper noise removal via local hölder seminorm and nonlocal operator for natural and texture image. J Math Imaging Vis 51(3):400–412

    Article  MATH  Google Scholar 

  36. Shi K, Zhang D, Guo Z, Sun J, Wu B (2016) A non-divergence diffusion equation for removing impulse noise and mixed gaussian impulse noise. Neurocomputing 173:659–670

    Article  Google Scholar 

  37. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  38. Wu J, Tang C (2011) PDE-Based random-valued impulse noise removal based on new class of controlling functions. IEEE Trans Image Process 20 (9):2428–2438

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu J, Tang C (2014) Random-valued impulse noise removal using fuzzy weighted non-local means. SIViP 8(2):349–355

    Article  Google Scholar 

  40. Xiong B, Yin Z (2012) A universal denoising framework with a new impulse detector and nonlocal means. IEEE Trans Image Process 21(4):1663–1675

    Article  MathSciNet  MATH  Google Scholar 

  41. Yan M (2013) Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM J Imaging Sci 6(3):1227–1245

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang J, Zhang Y, Yin W (2009) An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J Sci Comput 31(4):2842–2865

    Article  MathSciNet  MATH  Google Scholar 

  43. Yuan G, Ghanem B (2017) l0 TV: A sparse optimization method for impulse noise image restoration. IEEE Trans Pattern Anal Mach Intell 41(2):352–364

    Article  Google Scholar 

  44. Zhang X, Bai M, Ng MK (2017) Nonconvex-TV based image restoration with impulse noise removal. SIAM J Imaging Sci 10(3):1627–1667

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang X, Xiong Y (2009) Impulse noise removal using directional difference based noise detector and adaptive weighted mean filter. IEEE Signal Process Lett 16(4):295–298

    Article  Google Scholar 

  46. Zhang B, Zhu G, Zhu Z (2020) A TV-log nonconvex approach for image deblurring with impulsive noise. Signal Process 107631:174

    Google Scholar 

  47. Zhou Z (2012) Cognition and removal of impulse noise with uncertainty. IEEE Trans Image Process 21(7):3157–3167

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ming Yan for sharing his code of AOP with us and thank Yang Chen for sharing his code of SAFE with us. The author would also like to thank the referees for the valuable suggestions and comments. This work was supported by the National Natural Science Foundation of China (12001509) and the Natural Science Foundation of Zhejiang Province (LQ21A010010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehan Shi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, K. A gray level indicator-based nonlinear diffusion equation for the removal of random-valued impulse noise. Multimed Tools Appl 81, 10529–10544 (2022). https://doi.org/10.1007/s11042-022-12255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12255-x

Keywords

Navigation