Skip to main content
Log in

Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The paper presents an efficient lightweight U-net convolutional neural network (CNN) architecture that can be used for iris segmentation in eye images. The novelty of the proposed method consists of model downscaling for efficiency, while maintaining high iris segmentation accuracy. The network is validated on different resolution and quality images from five standard open source benchmarks: BioSec, CasiaI4, CasiaT4, IITD, and UBIRIS. The efficient U-net architecture consists of 36 layers and uses 148 k parameters, value order of magnitude lower than other existing networks used for similar applications. This also leads to a much lower training time and eye image segmentation time (< 1 ms per image on Xeon CPU). The iris segmentation results obtained were state-of-the-art in terms of standard nice1, F1 and mIoU accuracy measures on all the analyzed datasets. Whilst some differences can be observed for these measurements between datasets, the lowest values for F1 and mIoU parameters obtained were 96.14% and 92.56%, respectively, on UBIRIS dataset, and for nice1 parameter 0.38 on CasiaT4. The best results were obtained on CasiaI4 dataset with F1 = 98.61%, mIoU = 97.26%, and nice1 = 0.78.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ballard DH (1987) Generalizing the Hough transform to detect arbitrary shapes. In: Readings in computer vision. Elsevier, pp 714–725

    Google Scholar 

  2. Bendale A, Nigam A, Prakash S, Gupta P (2012) Iris segmentation using improved Hough transform. In: International Conference on Intelligent Computing. Springer, pp 408–415

    Google Scholar 

  3. Bezerra CS, Laroca R, Lucio DR, Severo E, Oliveira LF, Britto AS, Menotti D (2018) Robust iris seg- mentation based on fully convolutional networks and generative adversarial networks. In: 2018 31st SIB- GRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE, pp 281–288

    Chapter  Google Scholar 

  4. Bozomitu RG, Pasarica A, Tarniceriu D, Rotariu C (2019) Development of an eye tracking-based human-computer interface for real-time applications. Sensors 19(16):3630

    Article  Google Scholar 

  5. Chollet F (2017) Xception: Deep learning with depth wise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1251–1258

    Google Scholar 

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

    Google Scholar 

  7. Demos S (2020) Personal electronic device for performing multimodal imaging for non-contact identification of multiple biometric traits. US Patent 10,599,932

  8. Fierrez J, Ortega-Garcia J, Toledano DT, Gonzalez-Rodriguez J (2007) Biosec baseline corpus: A multimodal bio- metric database. Pattern Recogn 40(4):1389–1392

    Article  Google Scholar 

  9. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal Mach Intell 21(5):476–480

    Article  Google Scholar 

  10. Gangwar A, Joshi A, Singh A, Alonso-Fernandez F, Bigun J (2016) Irisseg: A fast and robust iris segmentation framework for non-ideal iris images. In: 2016 International Conference on Biometrics (ICB). IEEE, pp 1–8

    Google Scholar 

  11. Goodfellow I (2016) Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160

  12. Hapsari R, Utoyo M, Rulaningtyas R, Suprajitno H (2020) Iris segmentation using Hough transform method and fuzzy c-means method. In: Journal of Physics: Conference Series 1477:022037

    Article  Google Scholar 

  13. Hofbauer H, Jalilian E, Uhl A (2019) Exploiting superior CNN-based iris segmentation for better recognition accuracy. Pattern Recogn Lett 120:17–23

    Article  Google Scholar 

  14. Jalilian E, Uhl A (2017) Iris segmentation using fully convolutional encoder–decoder networks. In: Deep Learning for Biometrics. Springer, pp 133–155

    Chapter  Google Scholar 

  15. Jeong DS, Hwang JW, Kang BJ, Park KR, Won CS, Park DK, Kim J (2010) A new iris segmentation method for non-ideal iris images. Image Vis Comput 28(2):254–260

    Article  Google Scholar 

  16. Kadry S, Rajinikanth V, Damaševičius R, Taniar D (2021) Retinal vessel segmentation with slime-Mould-optimization based multi-scale-matched-filter. In: 2021 seventh international conference on bio signals, images, and instrumentation (ICBSII). IEEE, pp 1–5

    Google Scholar 

  17. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  18. Kumar A, Passi A (2010) Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn 43(3):1016–1026

    Article  Google Scholar 

  19. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient- based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  20. Li D, Winfield D, Parkhurst DJ (2005) Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)-Workshops. IEEE, p 79

    Google Scholar 

  21. Lin G, Milan A, Shen C, Reid I (2017) Refinenet: Multi- path refinement networks for high-resolution semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 5168–5177

    Chapter  Google Scholar 

  22. Liu N, Li H, Zhang M, Liu J, Sun Z, Tan T (2016) Ac- curate iris segmentation in non-cooperative environments using fully convolutional networks. In: 2016 International Conference on Biometrics (ICB). IEEE, pp 1–8

    Google Scholar 

  23. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  24. Maqsood S, Damaševičius R, Maskeliūnas R (2021) Hemorrhage detection based on 3D CNN deep learning framework and feature fusion for evaluating retinal abnormality in diabetic patients. Sensors 21(11):3865

    Article  Google Scholar 

  25. Othman N, Dorizzi B, Garcia-Salicetti S (2016) Osiris: an open source iris recognition software. Pattern Recogn Lett 82:124–131

    Article  Google Scholar 

  26. Proenca H, Alexandre L (2007) The nice.i: Noisy iris challenge evaluation - part i, pp 1–4. https://doi.org/10.1109/BTAS.2007.4401910

  27. Proenca H, Filipe S, Santos R, Oliveira J, Alexandre L (2010) The UBIRIS.v2: A database of visible wave- length images captured on-the-move and at-a-distance. IEEE Trans. PAMI 32(8):1529–1535. https://doi.org/10.1109/TPAMI.2009.66

    Article  Google Scholar 

  28. Rajinikanth V, Kadry S, Damaševičius R, Taniar D, Rauf HT (2021, March) Machine-learning-scheme to detect choroidal-neovascularization in retinal OCT image. In: 2021 seventh international conference on bio signals, images, and instrumentation (ICBSII). IEEE, pp 1–5

    Google Scholar 

  29. Ramasamy LK, Padinjappurathu SG, Kadry S, Damaševičius R (2021) Detection of diabetic retinopathy using a fusion of textural and ridgelet features of retinal images and sequential minimal optimization classifier. PeerJ Computer Science 7:e456

    Article  Google Scholar 

  30. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp 234–241

    Google Scholar 

  31. Ryan WJ, Woodard DL, Duchowski AT, Birch- field ST (2008) Adapting starburst for elliptical iris segmentation. In: 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems. IEEE, pp 1–7

    Google Scholar 

  32. Sankowski W, Grabowski K, Napieralska M, Zubert M, Napieralski A (2010) Reliable algorithm for iris segmentation in eye image. Image Vis Comput 28(2):231–237

    Article  Google Scholar 

  33. Tan T, Sun Z (2005) Casia-irisv3. Chinese Academy of Sciences Institute of Automation, http://www.cbsr.ia.ac.cn/IrisDatabase.htm, Tech. Rep

  34. Tuama AS (2012) Iris image segmentation and recognition. International Journal of Computer Science & Emerging Technologies 3(2):60–65

    Google Scholar 

  35. Uchida K (2001) Biometric identification method and system. US Patent App. 09/775,617

  36. Uhl A, Wild P (2012) Weighted adaptive Hough and ellipsopolar transforms for real-time iris segmentation. In: 2012 5th IAPR international conference on biometrics (ICB). IEEE, pp 283–290

    Chapter  Google Scholar 

  37. Varkarakis V, Bazrafkan S, Corcoran P (2020) Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets. Neural Netw 121:101–121

    Article  Google Scholar 

  38. Wu X, Zhao L (2019) Study on iris segmentation algorithm based on dense u-net. IEEE Access 7:123959–123968

    Article  Google Scholar 

  39. Yang Y, Shen P, Chen C (2018) A robust iris segmentation using fully convolutional network with dilated convolutions. In: 2018 IEEE International Symposium on Multimedia (ISM). IEEE, pp 9–16

    Chapter  Google Scholar 

  40. Zhang W, Lu X, Gu Y, Liu Y, Meng X, Li J (2019) A robust iris segmentation scheme based on improved u-net. IEEE Access 7:85082–85089

    Article  Google Scholar 

  41. Zhao Z, Ajay K (2015) An accurate iris segmentation frame- work under relaxed imaging constraints using total variation model. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3828–3836

    Google Scholar 

  42. Zuo J, Ratha NK, Connell JH (2008) A new approach for iris segmentation. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, pp 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casian Miron.

Ethics declarations

Conflict of interest

All the authors have no conflicts of interest to declare that are relevant to the content of this article and have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miron, C., Pasarica, A., Manta, V. et al. Efficient and robust eye images iris segmentation using a lightweight U-net convolutional network. Multimed Tools Appl 81, 14961–14977 (2022). https://doi.org/10.1007/s11042-022-12212-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12212-8

Keywords

Navigation