Skip to main content
Log in

A pair-mode model for underwater single image enhancement

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

A Correction to this article was published on 18 May 2022

This article has been updated

Abstract

Enhancing underwater images is a challenging problem owing to light scattering and absorption in underwater environments. Such environments provoke several combined degradations in images including color attenuation, blurring and low contrast. Using image processing techniques to enhance this kind of image remains very attractive because of its low-cost of implementation and typically its small number of parameters when compared to more complex learning techniques. This paper proposes an image processing model which first, analyses the color characteristics of the degraded image. Second, decides about the suitable enhancement steps (i.e., mode of operation) to be performed. It operates in two modes (mode-1 and mode-2), both of which investigate a combination of contrast and chromaticity enhancement techniques. The proposed model was tested on 5141 images collected from various, well-known datasets. It was evaluated using eight different measures, some of which are reference-based, and the rest are blind-based. A set of qualitative and quantitative comparisons was conducted, applying more than 20 methods varying between image processing and deep learning. Besides its efficiency and simplicity, the proposed model demonstrates an ability to achieve good contrast ranges, natural-looking colors, and superior or equivalent quality enhancements when compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

Notes

  1. Dive+ is a commercial application for underwater image color correction, found at: https://itunes.apple.com/us/app/dive-video-color-correction/id1251506403?mt=8.

References

  1. Akkaynak D, Treibitz T (2019) Sea-thru: a method for removing water from underwater images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 1682-1691. https://doi.org/10.1109/CVPR.2019.00178

  2. Ancuti CO, Ancuti C, De Vleeschouwer C, Bekaert P (2018) Color balance and fusion for underwater image enhancement. IEEE Trans Image Process 27(1):379–393. https://doi.org/10.1109/TIP.2017.2759252

    Article  MathSciNet  MATH  Google Scholar 

  3. Ancuti C, Ancuti CO, Haber T, Bekaert P (2012) Enhancing underwater images and videos by fusion. In IEEE Conference on Computer Vision and Pattern Recognition, pp 81–88. https://doi.org/10.1109/cvpr.2012.6247661

  4. Anwar S, Li C, Porikli F (2018) Deep underwater image enhancement. arXiv preprint arXiv:1807.03528

  5. Anwar S, Li C (2020) Diving deeper into underwater image enhancement: A survey. Signal Process Image Commun 89:115978. https://doi.org/10.1016/j.image.2020.115978

    Article  Google Scholar 

  6. Berman D, Levy D, Avidan S, Treibitz T (2020) Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans Pattern Anal Mach Intell:1. https://doi.org/10.1109/TPAMI.2020.2977624

  7. Cai C, Mitra SK (2000) A normalized color difference edge detector based on quaternion representation. In: Proceedings 2000 international conference on image processing, pp 816-819. https://doi.org/10.1109/ICIP.2000.899834

  8. Carlevaris-Bianco N, Mohan A, Eustice RM (2010) Initial results in underwater single image dehazing. In oceans 2010 Mts/IEEE Seattle, pp. 1-8. https://doi.org/10.1109/OCEANS.2010.5664428

  9. Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769. https://doi.org/10.1109/tip.2011.2179666

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiang JY, Chen YC, Chen YF (2011) Underwater image enhancement: using wavelength compensation and image dehazing (WCID). In: International conference on advanced concepts for intelligent vision systems. Springer, Berlin, Heidelberg, pp. 372–383 https://doi.org/10.1007/978-3-642-23687-7_34

  11. Chiu K, Herf M, Shirley P, Swamy S, Wang C, Zimmerman K (1993) Spatially nonuniform scaling functions for high contrast images. In graphics Interface. Canadian information processing society, pp 245-245

  12. Coastal Inlets Research Program (CIRP) Wiki – Statistics: https://cirpwiki.info/wiki/Statistics#Normalization. Accessed 5 Jun 2014

  13. Dive+World's Diving Community 4+, Color correction & dive logs, Life Plus Tech (Shenzhen) Co., Ltd.: https://itunes.apple.com/us/app/dive-video-color-correction/id1251506403?mt=8. Accessed 31 Aug 2021

  14. Drews P, Nascimento E, Moraes F, Botelho S, Campos M (2013) Transmission estimation in underwater single images. In: Proceedings of the IEEE international conference on computer vision workshops, pp 825-830. https://doi.org/10.1109/iccvw.2013.113

  15. Duntley SQ (1963) Light in the sea. JOSA 53(2):214–233

    Article  Google Scholar 

  16. Emberton S, Chittka L, Cavallaro A (2015) hierarchical rank-based veiling light estimation for underwater dehazing. In: British Machine Vision Conference 2015. https://doi.org/10.5244/C.29.125

  17. Emberton S, Chittka L, Cavallaro A (2018) Underwater image and video dehazing with pure haze region segmentation. Comput Vis Image Underst 168:145–156. https://doi.org/10.1016/j.cviu.2017.08.003

    Article  Google Scholar 

  18. Fabbri C, Islam MJ, Sattar J (2018) Enhancing underwater imagery using generative adversarial networks. In: IEEE international conference on robotics and automation (ICRA), pp 7159-7165. https://doi.org/10.1109/ICRA.2018.8460552

  19. Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):1–9. https://doi.org/10.1145/1360612.1360671

    Article  Google Scholar 

  20. Finlayson G, Zakizadeh R (2014) Reproduction angular error: an improved performance metric for illuminant estimation. In: Proceedings of the British machine vision conference, BMVA press. https://doi.org/10.13140/RG.2.1.4625.6806

  21. Fu X, Fan Z, Ling M, Huang Y, Ding X (2017) Two-step approach for single underwater image enhancement. In: International symposium on intelligent signal processing and communication systems (ISPACS), pp 789-794. https://doi.org/10.1109/ISPACS.2017.8266583

  22. Fu X, Zhuang P, Huang Y, Liao Y, Zhang XP, Ding X (2015) A retinex-based enhancing approach for single underwater image. In: IEEE international conference on image processing (ICIP), pp 4572-4576. https://doi.org/10.1109/ICIP.2014.7025927

  23. Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic red-channel underwater image restoration. J Vis Commun Image Represent 26:132–145. https://doi.org/10.1016/j.jvcir.2014.11.006

    Article  Google Scholar 

  24. Gonzalez R, Woods R (2018) Digital image processing. Pearson, New York

    Google Scholar 

  25. Guo Y, Li H, Zhuang P (2019) Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J Ocean Eng 45(3):862–870. https://doi.org/10.1109/JOE.2019.2911447

    Article  Google Scholar 

  26. Hautière N, Tarel JP, Aubert D, Dumont É (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereol J 27(2):87–95. https://doi.org/10.5566/ias.v27.p87-95

    Article  MathSciNet  MATH  Google Scholar 

  27. He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353. https://doi.org/10.1109/CVPRW.2009.5206515

    Article  Google Scholar 

  28. Hiary H, Zaghloul R, Al-Adwan A, Al-Zoubi MB (2017) Image contrast enhancement using geometric mean filter. SIViP 11(5):833–840. https://doi.org/10.1007/s11760-016-1029-8

    Article  Google Scholar 

  29. Hummel R (1977) Image enhancement by histogram transformation. Comput Graph Image Process 6(2):184–195. https://doi.org/10.1016/S0146-664X(77)80011-7

    Article  MathSciNet  Google Scholar 

  30. Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010) Enhancing the low quality images using unsupervised colour correction method. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 1703–1709. https://doi.org/10.1109/ICSMC.2010.5642311

  31. Li CY, Guo JC, Cong RM, Pang YW, Wang B (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 25(12):5664–5677. https://doi.org/10.1109/TIP.2016.2612882

    Article  MathSciNet  MATH  Google Scholar 

  32. Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, Tao D (2019) An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389. https://doi.org/10.1109/TIP.2019.2955241

    Article  Google Scholar 

  33. Li C, Guo J, Guo C, Cong R, Gong J (2017) A hybrid method for underwater image correction. Pattern Recogn Lett 94:62–67. https://doi.org/10.1016/j.patrec.2017.05.023

    Article  Google Scholar 

  34. Li C, Saeed A, Fatih P (2019) Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn 98:107038. https://doi.org/10.1016/j.patcog.2019.107038

    Article  Google Scholar 

  35. Li J, Skinner KA, Eustice RM, Johnson-Roberson M (2017) WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot Autom Lett 3(1):387–394. https://doi.org/10.1109/LRA.2017.2730363

    Article  Google Scholar 

  36. Liu Y, Rong S, Cao X, Li T, He B (2020) Underwater single image dehazing using the color space dimensionality reduction prior. IEEE Access 8:91116–91128. https://doi.org/10.1109/ACCESS.2020.2994614

    Article  Google Scholar 

  37. Matkovic K, Neumann L, Neumann A, Psik T, Purgathofer W (2005) Global contrast factor - a new approach to image contrast. In: Proceeding of Computational Aesthetics in Graphics, Visualization and Imaging, pp. 159–167.

  38. McCamy CS, Marcus H, Davidson JG (1976) A color-rendition chart. J App Photog Eng 2(3):95–99

    Google Scholar 

  39. Panetta K, Gao C, Again S (2015) Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng 41(3):541–551. https://doi.org/10.1109/JOE.2015.2469915

    Article  Google Scholar 

  40. Peng YT, Cosman PC (2017) Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 26(4):1579–1594. https://doi.org/10.1109/TIP.2017.2663846

    Article  MathSciNet  MATH  Google Scholar 

  41. Peng YT, Cao K, Cosman PC (2018) Generalization of the dark channel prior for single image restoration. IEEE Trans Image Process 27(6):2856–2868. https://doi.org/10.1109/TIP.2018.2813092

    Article  MathSciNet  MATH  Google Scholar 

  42. Peng YT, Zhao X, Cosman PC (2015) Single underwater image enhancement using depth estimation based on blurriness. In: IEEE international conference on image processing (ICIP), pp 4952-4956. https://doi.org/10.1109/ICIP.2015.7351749

  43. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):335–368. https://doi.org/10.1016/S0734-189X(87)80186-X

    Article  Google Scholar 

  44. Pratt WK (2007) Digital image processing: Piks scientific inside, fourth edition. Wiley-interscience, A John Wiley & Sons, Inc., Publication, United States of America.

  45. Rahman ZU, Jobson DJ, Woodell GA (1996) Multi-scale retinex for color image enhancement. In: Proceedings of 3rd IEEE international conference on image processing, Vol. 3 pp 1003-1006. https://doi.org/10.1109/ICIP.1996.560995

  46. Schlick C (1995) Quantization techniques for visualization of high dynamic range pictures. In: Photorealistic rendering techniques, pp 7–20. https://doi.org/10.1007/978-3-642-87825-1_2

  47. Shamsuddin N, Wan AWF, Mohd RMK (2012) Significance level of image enhancement techniques for underwater images. International Conference on Computer & Information Science (ICCIS) https://doi.org/10.1109/ICCISci.2012.6297295

  48. Tumblin J, Turk G (1999) LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp 83–90. https://doi.org/10.1145/311535.311544

  49. Wang N, Zhou Y, Han F, Zhu H, Zheng Y (2019) UWGAN: underwater GAN for real-world underwater color restoration and Dehazing. arXiv preprint arXiv:1912.10269

  50. Wang S, Zheng J, Hu HM, Li B (2013) Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans Image Process 22(9):3538–3548. https://doi.org/10.1109/TIP.2013.2261309

    Article  Google Scholar 

  51. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/tip.2003.819861

    Article  Google Scholar 

  52. Yang M, Hu J, Li C, Rohde G, Du Y, Hu K (2019) An in-depth survey of underwater image enhancement and restoration. IEEE Access 7:123638–123657. https://doi.org/10.1109/ACCESS.2019.2932611

    Article  Google Scholar 

  53. Zaghloul R, Hiary H (2020) A fast single image fog removal method using geometric mean histogram equalization. Int J Image Graph 21(1):1–22. https://doi.org/10.1142/S0219467821500017

    Article  Google Scholar 

  54. Zhang S, Wang T, Dong J, Yu H (2017) Underwater image enhancement via extended multi-scale Retinex. Neurocomputing 245:1–9. https://doi.org/10.1016/j.neucom.2017.03.029

    Article  Google Scholar 

  55. Zhang W, Lili D, Tong Z, Wenhai X (2021) Enhancing underwater image via color correction and bi-interval contrast enhancement. Signal Process Image Commun 90:116030. https://doi.org/10.1016/j.image.2020.116030

    Article  Google Scholar 

Download references

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors propose a pair-mode model for enhancing underwater images, based upon the color characteristics of those images.

Corresponding author

Correspondence to Rawan Zaghloul.

Ethics declarations

Conflicts of interest/competing interests

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: Top line of page 20 contains overlapping of text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaghloul, R., Hiary, H. A pair-mode model for underwater single image enhancement. Multimed Tools Appl 81, 31953–31974 (2022). https://doi.org/10.1007/s11042-022-12135-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12135-4

Keywords

Navigation