Skip to main content
Log in

Cloud detection in satellite images with classical and deep neural network approach: A review

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This article introduces a review on implementations of various methods to perform cloud detection and its related applications such as detection of cloud shadow, types of cloud and cloud removal from multi-spectral satellite images. The cloud detection concept started with the basic sensitive parameters of clouds. These parameters have been reported based on albedo, spectral and textural parameters in the decade of 1980. With this parameters, a new era of Neural Network (NN) approach has been stimulated from 1992 for cloud classification. A summary of their empirical results are provided for various published works based on NN approach from 1970 to 2020. Moreover, the present article embodies experimental analysis of cloud detection using NN based classifier on multi-spectral satellite images with distinguish mathematical model of learning rules and number of hidden layers. The analysis is verified on L8, AVHRR, NOAA and GOES satellite images. The result demonstrates improved performance of NN approach with two layer perceptron architecture with Levenberg-Marquardt learning rule for cloud detection in terms of ellapse time. However, potential of self-organizing feature map (SOFM), an unsupervised NN approach, is observed in terms of accuracy over supervised learning architecture. The cloud detection algorithm is further discussed with convolutional neural network (CNN) as a deep learning algorithm to extract the local and global features from limited number of spectral bands to raise the performance accuracy of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ackerman SA, Holz RE, Frey R, Eloranta EW, Maddux BC, Mcgill M (2008) Cloud detection with modis. part ii: validation. J Atmos Ocean Technol 25(7):1073–1086

    Article  Google Scholar 

  2. Alonso-Montesinos J, Martinez-Durban M, del Sagrado J, del Aguila IM, Batlles FJ (2016) The application of bayesian network classifiers to cloud classification in satellite images. Renew Energy 97:155–161

    Article  Google Scholar 

  3. Angiulli F (2005) Fast condensed nearest neighbor rule. In: Proceedings of the 22nd international conference on Machine learning. ACM, pp 25–32

  4. Arking A (1964) Latitudinal distribution of cloud cover from tiros iii photographs. Science 143(3606):569–572

    Article  Google Scholar 

  5. Azimi-Sadjadi MR, Zekavat SA (2000) Cloud classification using support vector machines. In: Geoscience and remote sensing symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 international, vol 2. IEEE, pp 669–671

  6. Azimi-sadjadi MR, Shaikh MA, Tian B, Eis KE, Reinke D (1996) Neural network-based cloud detection/classification using textural and spectral features. In: Geoscience and remote sensing symposium, 1996. IGARSS’96.’remote sensing for a sustainable future.’, international, vol 2. IEEE, pp 1105–1107

  7. Bai T, Li D, Sun K, Chen Y, Li W (2016) Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sens 8(9):715

    Article  Google Scholar 

  8. Bankert RL (1994) Cloud classification of avhrr imagery in maritime regions using a probabilistic neural network. J Appl Meteorol 33(8):909–918

    Article  Google Scholar 

  9. Bankert RL, Aha DW (1996) Improvement to a neural network cloud classifier. J Appl Meteorol 35(11):2036–2039

    Article  Google Scholar 

  10. Bankert RL, Wade RH (2007) Optimization of an instance-based goes cloud classification algorithm. J Appl Meteorol Climatol 46(1):36–49

    Article  Google Scholar 

  11. Bell GJ, Wong MC (1981) The near-infrared radiation received by satellites from clouds. Mon Weather Rev 109(10):2158–2163

    Article  Google Scholar 

  12. Berendes T, Kuo KS, Logar AM, Corwin EM, Welch RM, Baum BA, Pretre A, Weger RC (1999) A comparison of paired histogram, maximum likelihood, class elimination, and neural network approaches for daylight global cloud classification using avhrr imagery. J Geophys Res 104(6):6199–6213

    Article  Google Scholar 

  13. Bloshchinskiy VD, Kuchma MO, Andreev AI, Sorokin AA (2020) Snow and cloud detection using a convolutional neural network and low-resolution data from the electro-l no. 2 satellite. J Appl Remote Sens 14(3):034506

    Article  Google Scholar 

  14. Bowker DE, Davis RE, Myrick DL, Stacy K, Jones WT (1985) Spectral reflectances of natural targets for use in remote sensing studies. National Aeronautics and Space Administration Scientific and Technical Information Branch

  15. Brown M, Lewis HG, Gunn SR (2000) Linear spectral mixture models and support vector machines for remote sensing. IEEE Trans Geosci Remote Sens 38(5):2346–2360

    Article  Google Scholar 

  16. Cai W, Liu B, Wei Z, Li M, Kan J (2021) Tardb-net: triple-attention guided residual dense and bilstm networks for hyperspectral image classification. Multimed Tools Appl, 1–22

  17. Cerdena A, Gonzalez A, Perez JC (2007) Remote sensing of water cloud parameters using neural networks. J Atmos Ocean Technol 24(1):52–63

    Article  Google Scholar 

  18. Chai D, Newsam S, Zhang HK, Qiu Y, Huang J (2019) Cloud and cloud shadow detection in landsat imagery based on deep convolutional neural networks. Remote Sens Environ 225:307–316

    Article  Google Scholar 

  19. Chen Y, Fan R, Bilal M, Yang X, Wang J, Li W (2018) Multilevel cloud detection for high-resolution remote sensing imagery using multiple convolutional neural networks. ISPRS Int J Geo-Inform 7(5):181

    Article  Google Scholar 

  20. Chen PC, Pavlidis T (1979) Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm. Comput Graph Image Process 10(2):172–182

    Article  Google Scholar 

  21. Chen P-Y, Srinivasan R, Fedosejevs G (2003) An automated cloud detection method for daily noaa 16 advanced very high resolution radiometer data over texas and mexico. Journal of Geophysical Research: Atmospheres 108(D23)

  22. Chen PY, Srinivasan R, Fedosejevs G, Narasimhan B (2002) an automated cloud detection method for daily noaa-14 avhrr data for texas, usa. Int J Remote Sens 23(15):2939–2950

    Article  Google Scholar 

  23. Cheng H-Y, Lin CL (2017) Cloud detection in all-sky images via multi-scale neighborhood features and multiple supervised learning techniques. Atmospheric Measurement Techniques, 10(1)

  24. Cheng Q, Shen H, Zhang L, Yuan Q, Zeng C (2014) Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal mrf model. ISPRS J Photogramm Remote Sens 92:54–68

    Article  Google Scholar 

  25. Chethan HK, Hemantha Kumar G, Raghavendra R (2009) Texture based approach for cloud classification using svm. In: Advances in recent technologies in communication and computing, 2009. ARTCom’09. International conference on. IEEE, pp 688–690

  26. Coakley JA Jr (1914) Reflectance, albedo, surface. encyclopedia of the atmosphere. Holton Jr and Curry Ja (Eds)

  27. Coakley JA, Bretherton FP (1982) Cloud cover from high-resolution scanner data- detecting and allowing for partially filled fields of view. J Geophys Res 87(C7):4917–4932

    Article  Google Scholar 

  28. Cote S, Tatnall ARL (1995) A neural network-based method for tracking features from satellitesensor images. Int J Remote Sens 16(18):3695–3701

    Article  Google Scholar 

  29. Crane RG, Anderson MR (1984) Satellite discrimination of snow/cloud surfaces. Int J Remote Sens 5(1):213–223

    Article  Google Scholar 

  30. Cromwell E, Flynn D (2019) Lidar cloud detection with fully convolutional networks. In: 2019 IEEE Winter conference on applications of computer vision (WACV). IEEE, pp 619–627

  31. Deng C, Li Z, Wang W, Wang S, Tang L, Bovik AC (2018) Cloud detection in satellite images based on natural scene statistics and gabor features. IEEE Geosci Remote Sens Lett 16(4):608–612

    Article  Google Scholar 

  32. Desbois M, Seze G (1984) Use of space and time sampling to produce representative satellite cloud classifications. In: Annales geophysicae, vol 2. Gauthier-villars, pp 599–605

  33. Dev S, Manandhar S, Lee YH, Winkler S (2019) Multi-label cloud segmentation using a deep network. In: 2019 USNC-URSI Radio science meeting (joint with AP-s symposium). IEEE, pp 113–114

  34. Ebert E (1987) A pattern recognition technique for distinguishing surface and cloud types in the polar regions. J Clim Appl Meteorol 26(10):1412–1427

    Article  Google Scholar 

  35. Faure T, Isaka H, Guillemet B (2001) Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: Feasibility study. Remote Sens Environ 77(2):123–138

    Article  Google Scholar 

  36. Faure T, Isaka H, Guillemet B (2001) Mapping neural network computation of high-resolution radiant fluxes of inhomogeneous clouds. J Geophys Res Atmospheres 106(D14):14961–14973

    Article  Google Scholar 

  37. Faure T, Isaka H, Guillemet B (2001) Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds. J Geophys Res Atmospheres 106(D13):14465–14484

    Article  Google Scholar 

  38. Feijt A, De Valk P, Van Der Veen S (2000) Cloud detection using meteosat imagery and numerical weather prediction model data. J Appl Meteorol 39(7):1017–1030

    Article  Google Scholar 

  39. Filippi AM, Archibald R (2009) Support vector machine-based endmember extraction. IEEE Trans Geosci Remote Sens 47(3):771–791

    Article  Google Scholar 

  40. Fisher A (2014) Cloud and cloud-shadow detection in spot5 hrg imagery with automated morphological feature extraction. Remote Sens 6(1):776–800

    Article  Google Scholar 

  41. Fleming JR, Cox SK (1974) Radiative effects of cirrus clouds. J Atmos Sci 31(8):2182–2188

    Article  Google Scholar 

  42. GOES (2020) image data sets https://www.ncdc.noaa.gov/data-access/satellite-data/goes-r-series-satelliteshttps://www.ncdc.noaa.gov/data-access/satellite-data/goes-r-series- https://www.ncdc.noaa.gov/data-access/satellite-data/goes-r-series-satellitessatellites

  43. Garand L (1988) Automated recognition of oceanic cloud patterns. part i: Methodology and application to cloud climatology. J Clim 1(1):20–39

    Article  Google Scholar 

  44. Giuffrida G, Diana L, de Gioia F, Benelli G, Meoni G, Donati M, Fanucci L (2020) Cloudscout: A deep neural network for on-board cloud detection on hyperspectral images. Remote Sens 12(14):2205

    Article  Google Scholar 

  45. Grant IP, Hunt GE (1969) Discrete space theory of radiative transfer. ii. stability and non-negativity. In: Proceedings of the royal society of london a: Mathematical, physical and engineering sciences, vol 313. The Royal Society, pp 199–216

  46. Greaves JR, Chang DT (1970) Technique Development to permit optimum use of satellite radiation data. Final Report, NASA Goddard Space Flight Center. Greenbelt, Maryland

    Google Scholar 

  47. Guo Y, Cao X, Liu B, Gao M (2020) Cloud detection for satellite imagery using attention-based u-net convolutional neural network. Symmetry 12 (6):1056

    Article  Google Scholar 

  48. Guo J, Yang J, Yue H, Tan H, Hou C, Li K (2020) Cdnetv2: Cnn-based cloud detection for remote sensing imagery with cloud-snow coexistence. IEEE Transactions on Geoscience and Remote Sensing

  49. Gupta R, Nanda SJ (2019) A binary nsga-iii for unsupervised band selection in hyper-spectral satellite images. In: 2019 IEEE Congress on evolutionary computation (CEC). IEEE, pp 522–529

  50. Gupta R, Nanda SJ (2019) Many-objective b/nsga-iii for band selection in cloud contaminated hyper-spectral images. In: 2019 International conference on information technology (ICIT). IEEE, pp 348–352

  51. Gupta R, Nanda SJ, Shukla UP (2019) Cloud detection in satellite images using multi-objective social spider optimization. Appl Soft Comput 79:203–226

    Article  Google Scholar 

  52. Gupta R, Panchal P (2014) Performance analysis and verification of cloud detection algorithm in the presence of various ecological types. In: Emerging technology trends in electronics, communication and networking (ET2ECN), 2014 2nd international conference on. IEEE, pp 1–6

  53. Gutman G, Tarpley D, Ohring G (1987) Cloud screening for determination of land surface characteristics in a reduced resolution satellite data set. Int J Remote Sens 8(6):859–870

    Article  Google Scholar 

  54. Hagolle O, Huc M, Pascual DV, Dedieu G (2010) A multi-temporal method for cloud detection, applied to formosat-2, venμ s, landsat and sentinel-2 images. Remote Sens Environ 114(8):1747–1755

    Article  Google Scholar 

  55. He Quan-Jun (2011) A daytime cloud detection algorithm for fy-3a/virr data. Int J Remote Sens 32(21):6811–6822

    Article  Google Scholar 

  56. He Q (2013) Night-time cloud detection for fy-3a/virr using multispectral thresholds. Int J Remote Sens 34(8):2876–2887

    Article  Google Scholar 

  57. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580

  58. Holyer RJ, Peckinpaugh SH (1989) Edge detection applied to satellite imagery of the oceans. IEEE Trans Geosci Remote Sens 27(1):46–56

    Article  Google Scholar 

  59. Hong Y, Hsu K-L, Sorooshian S, Gao X (2004) Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J Appl Meteorol 43(12):1834–1853

    Article  Google Scholar 

  60. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci 79(8):2554–2558

    Article  MathSciNet  MATH  Google Scholar 

  61. Hsu K-L, Gao X, Sorooshian S, Gupta HV (1997) Precipitation estimation from remotely sensed information using artificial neural networks. J Appl Meteorol 36(9):1176–1190

    Article  Google Scholar 

  62. Hsu K-L, Gupta HV, Gao X, Sorooshian S (1999) Estimation of physical variables from multichannel remotely sensed imagery using a neural network: Application to rainfall estimation. Water Resour Res 35(5):1605–1618

    Article  Google Scholar 

  63. Hsu K-L, Sorooshian S, Gao X, Gupta HV (1997) Rainfall estimation from satellite infrared imagery using artificial neural networks. Technical report, Department of Hydrology and Water Resources, University of arizona (tucson AZ)

  64. Hughes M, Hayes D (2014) Automated detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing. Remote Sens 6(6):4907–4926

    Article  Google Scholar 

  65. Hulley GC, Hook SJ (2008) A new methodology for cloud detection and classification with aster data. Geophys Res Lett, 35(16)

  66. Hunt GE (1973) Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths. R Meteorologic Soc Quarter J 99:346–369

    Google Scholar 

  67. Islam J, Li X, Mei Y (2017) A time-varying transfer function for balancing the exploration and exploitation ability of a binary pso. Appl Soft Comput 59:182–196

    Article  Google Scholar 

  68. Jacobowitz H (1970) EM [SSION Scattering And Absorption Of Radiation In Cirrus Cloud Layers. PhD thesis, Massachusetts Institute of Technology

  69. Jang J-D, Viau AA, Anctil F (2004) Neural network estimation of air temperatures from avhrr data. Int J Remote Sens 25(21):4541–4554

    Article  Google Scholar 

  70. Jang J-D, Viau AA, Anctil F, Bartholome E (2006) Neural network application for cloud detection in spot vegetation images. Int J Remote Sens 27(4):719–736

    Article  Google Scholar 

  71. Jedlovec GJ, Haines SL, La Fontaine FJ (2008) Spatial and temporal varying thresholds for cloud detection in goes imagery. IEEE Trans Geosci Remote Sens 46(6):1705–1717

    Article  Google Scholar 

  72. Jensen JR (2009) Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India, Chapter 2

  73. Jeppesen JH, Jacobsen RH, Inceoglu F, Toftegaard TS (2019) A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens Environ 229:247–259

    Article  Google Scholar 

  74. Ji S, Dai P, Lu M, Zhang Y (2020) Simultaneous cloud detection and removal from bitemporal remote sensing images using cascade convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing

  75. Johnston T, Young SR, Hughes D, Patton RM, White D (2017) Optimizing convolutional neural networks for cloud detection. In: Proceedings of the machine learning on HPC environments, pp 1–9

  76. Joseph Hughes M, Hayes DJ (2014) Automated detection of cloud and cloud shadow in single-date landsat imagery using neural networks and spatial post-processing. Remote Sens 6(6):4907–4926

    Article  Google Scholar 

  77. Kaminsky EJ, Barad H, Brown W (1997) Textural neural network and version space classifiers for remote sensing. Int J Remote Sens 18(4):741–762

    Article  Google Scholar 

  78. Kazantzidis A, Eleftheratos K, Zerefos CS (2011) Effects of cirrus cloudiness on solar irradiance in four spectral bands. Atmos Res 102(4):452–459

    Article  Google Scholar 

  79. Knottenberg H, Raschke E (1982) On the discrimination of water and ice clouds in multispectral avhrr-data. Annalen der Meteorologie, (18):145–147

  80. Kohonen T (2012) Self-organization and associative memory, vol 8. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  81. Kristollari V, Karathanassi V (2020) Convolutional neural networks for detecting challenging cases in cloud masking using sentinel-2 imagery. In: Eighth international conference on remote sensing and geoinformation of the environment (RSCy2020), vol 11524. International Society for Optics and Photonics, p 115240k

  82. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  83. Kuenning JA, McKee TB, Cox SK (1978) A laboratory investigation of radiative transfer in cloud fields. Department of atmospheric science colorado state university

  84. Kuhn PM (1963) Measured effective long-wave emissivity of clouds. Mon Weather Rev 91(10):635–640

    Article  Google Scholar 

  85. Landsat (2020) image data sets https://earthexplorer.usgs.gov

  86. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face srecognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8 (1):98–113

    Article  Google Scholar 

  87. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  88. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  89. Lee KB, Cheon S, Kim CO (2017) A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Trans Semicond Manuf 30(2):135–142

    Article  Google Scholar 

  90. Lee Y, Wahba G, Ackerman SA (2004) Cloud classification of satellite radiance data by multicategory support vector machines. J Atmos Ocean Technol 21(2):159–169

    Article  Google Scholar 

  91. Lee J, Weger RC, Sengupta SK, Welch RM (1990) A neural network approach to cloud classification. IEEE Trans Geosci Remote Sens 28 (5):846–855

    Article  Google Scholar 

  92. Lewis HG, Cote S (1995) ARL Tatnall A Neural network approach to cloud classification from multi-temporal satellite imagery

  93. Lewis HG, Cote S, Tatnall ARL (1997) Determination of spatial and temporal characteristics as an aid to neural network cloud classification. Int J Remote Sens 18(4):899–915

    Article  Google Scholar 

  94. Li Y, Chen W, Zhang Y, Tao C, Xiao R, Tan Y (2020) Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sens Environ 250:112045

    Article  Google Scholar 

  95. Li P, Dong L, Xiao H, Xu M (2015) A cloud image detection method based on svm vector machine. Neurocomputing 169:34–42

    Article  Google Scholar 

  96. Li Q, Lu W, Yang J (2011) A hybrid thresholding algorithm for cloud detection on ground-based color images. J Atmospher Oceanic Technol 28(10):1286–1296

    Article  Google Scholar 

  97. Li Z, Shen H, Cheng Q, Liu Y, You S, He Z (2019) Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J Photogramm Remote Sens 150:197–212

    Article  Google Scholar 

  98. Li Z, Shen H, Wei Y, Cheng Q, Yuan Q (2018) Cloud detection by fusing multi-scale convolutional features. ISPRS Annals of the photogrammetry, Remote Sensing and Spatial Information Sciences 4(3):149–152

    Article  Google Scholar 

  99. Li H, Zheng H, Han C, Wang H, Miao M (2018) Onboard spectral and spatial cloud detection for hyperspectral remote sensing images. Remote Sens 10(1):152

    Article  Google Scholar 

  100. Liljas E (1986) Use of the AVHRR 3.7 micrometer channel in multispectral cloud classification. Swedish Meteorological and Hydrological Institute, Swedish

    Google Scholar 

  101. Liou K-N (1973) Transfer of solar irradiance through cirrus cloud layers. J Geophys Res 78(9):1409–1418

    Article  Google Scholar 

  102. Liou R-J, Azimi-sadjadi MR, Reinke DL, Vonder-Haar TH, Eis KE (1994) Detection and classification of cloud data from geostationary satellite using artificial neural networks. In: Neural networks, 1994. IEEE world congress on computational intelligence., 1994 IEEE international conference on, vol 7. IEEE, pp 4327–4332

  103. Lisens G, Kempencers P, Fierens F, Van Rensbergen J (2000) Development of cloud, snow, and shadow masking algorithms for vegetation imagery. In: Geoscience and remote sensing symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 international, vol 2. IEEE, pp 834–836

  104. Liu H, Zeng D, Tian Q (2018) Super-pixel cloud detection using hierarchical fusion cnn. In: 2018 IEEE Fourth international conference on multimedia big data (bigMM). IEEE, pp 1–6

  105. Lo RC, Johnson DR (1971) An investigation of cloud distribution from satellite infrared radiation data. Mon Weather Rev 99:599–605

    Article  Google Scholar 

  106. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  107. Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2016) Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans Geosci Remote Sens 55(2):645–657

    Article  Google Scholar 

  108. Maktav D (2009) Remote Sensing for a Changing Europe: Proceedings of the 28th Symposium of the European Association of Remote Sensing Laboratories, Istanbul, Turkey, 2-5 June 2008. IOS Press, Amsterdam

    Google Scholar 

  109. Mateo-García G, Laparra V, López-Puigdollers D, Gómez-Chova L (2020) Transferring deep learning models for cloud detection between landsat-8 and proba-v. ISPRS J Photogramm Remote Sens 160:1–17

    Article  Google Scholar 

  110. Mazzoni D, Garay MJ, Davies R, Nelson D (2007) An operational misr pixel classifier using support vector machines. Remote Sens Environ 107 (1):149–158

    Article  Google Scholar 

  111. Melgani F (2006) Contextual reconstruction of cloud-contaminated multitemporal multispectral images. IEEE Trans Geosci Remote Sens 44(2):442–455

    Article  Google Scholar 

  112. Miller SW, Emery WJ (1997) An automated neural network cloud classifier for use over land and ocean surfaces. J Appl Meteorol 36(10):1346–1362

    Article  Google Scholar 

  113. Miller WT, Glanz FH, Kraft LG (1990) Cmas: An associative neural network alternative to backpropagation. Proc IEEE 78(10):1561–1567

    Article  Google Scholar 

  114. Minnis P, Harrison EF (1984) Diurnal variability of regional cloud and clear-sky radiative parameters derived from goes data. part iii: November 1978 radiative parameters. J Climate Appl Meteorol 23(7):1032–1051

    Article  Google Scholar 

  115. Minnis P, Harrison EF, Gibson GG (1987) Cloud cover over the equatorial eastern pacific derived from july 1983 international satellite cloud climatology project data using a hybrid bispectral threshold method. J Geophys Res Atmospheres 92(D4):4051–4073

    Article  Google Scholar 

  116. Mohajerani S, Saeedi P (2019) Cloud-net: An end-to-end cloud detection algorithm for landsat 8 imagery. In: IGARSS 2019-2019 IEEE International geoscience and remote sensing symposium. IEEE, pp 1029–1032

  117. Morales G, Huamán SG, Telles J (2018) Cloud detection in high-resolution multispectral satellite imagery using deep learning. In: International conference on artificial neural networks. Springer, pp 280–288

  118. Murao H, Nishikawa I, Kitamura S, Yamada M, Xie P (1993) A hybrid neural network system for the rainfall estimation using satellite imagery. In: Neural Networks, 1993. IJCNN’93-Nagoya. Proceedings of 1993 International Joint Conference on, vol 2. IEEE, pp 1211–1214

  119. NASA (2016) https://isccp.giss.nasa.gov/products/onlinedata.html

  120. NOAA (2020) Environmental visualization laboratory http://www.nnvl.noaa.gov/imagegallery.php

  121. Nebauer C (1998) Evaluation of convolutional neural networks for visual recognition. IEEE Trans Neural Netw 9(4):685–696

    Article  Google Scholar 

  122. Ning X, Duan P, Li W, Zhang S (2020) Real-time 3d face alignment using an encoder-decoder network with an efficient deconvolution layer. IEEE Signal Process Lett 27:1944–1948

    Article  Google Scholar 

  123. Ning X, Gong K, Li W, Zhang L, Bai X, Tian S (2020) Feature refinement and filter network for person re-identification. IEEE Transactions on Circuits and Systems for Video Technology

  124. OF TIROS-N (1979) Data extraction and calibration of tiros-n/noaa radiometers

  125. Palsson F, Sveinsson JR, Ulfarsson MO (2017) Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network. IEEE Geosci Remote Sens Lett 14(5):639–643

    Article  Google Scholar 

  126. Parikh J (1977) A comparative study of cloud classification techniques. Remote Sens Environ 6(2):67–81

    Article  Google Scholar 

  127. Peak JE (1991) Application of neural networks to large-scale cloud pattern recognition. Technical report, DTIC Document

  128. Peak JE (1991) Neural network methodologies and their potential application to cloud pattern recognition. Technical report, DTIC Document

  129. Peak JE, Tag PM (1994) Segmentation of satellite imagery using hierarchical thresholding and neural networks. J Appl Meteorol 33(5):605–616

    Article  Google Scholar 

  130. Peak JE, Tag PM (1994) Segmentation of satellite imagery using hierarchical thresholding and neural networks. J Appl Meteorol 33(5):605–616

    Article  Google Scholar 

  131. Pickett RM (1970) Visual analysis of texture in the detection and recognition of objects. Picture Processing and Psychopictorics, 289–308

  132. Raschke E, Rossow W, Schiffer R (1987) The international satellite cloud climatology projectreliminary results and its potential aspects. Adv Space Res 7(3):137–145

    Article  Google Scholar 

  133. Rossow WB (1989) Measuring cloud properties from space: A review. J Clim 2(3):201–213

    Article  Google Scholar 

  134. Rossow WB, Garder LC, Lacis AA (1989) Global, seasonal cloud variations from satellite radiance measurements. part i: Sensitivity of analysis. J Clim 2(5):419–458

    Article  Google Scholar 

  135. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Technical report, DTIC Document

  136. Sam Navin M, Agilandeeswari L (2020) Multispectral and hyperspectral images based land use/land cover change prediction analysis: an extensive review. Multimed Tools Appl 79(39):29751–29774

    Article  Google Scholar 

  137. Saunders RWL, Kriebel KTS (1988) An improved method for detecting clear sky and cloudy radiances from avhrr data. Int J Remote Sens 9(1):123–150

    Article  Google Scholar 

  138. Savory TH (1928) The biology of spiders. Sidgwick And Jackson Ltd; London

  139. Schiffer RA, Rossow WB (1983) The international satellite cloud climatology project(isccp)- the first project of the world climate research programme. Amer Meteorologic Soc Bull 64:779–784

    Article  Google Scholar 

  140. Sedano F, Kempeneers P, Strobl P, Kucera J, Vogt P, Seebach L, San-Miguel-Ayanz J (2011) A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors. ISPRS J Photogramm Remote Sens 66(5):588–596

    Article  Google Scholar 

  141. Segal-Rozenhaimer M, Li A, Das K, Chirayath V (2020) Cloud detection algorithm for multi-modal satellite imagery using convolutional neural-networks (cnn). Remote Sens Environ 237:111446

    Article  Google Scholar 

  142. Seze G, Rossow WB (1991) Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations. Int J Remote Sens 12(5):877–920

    Article  Google Scholar 

  143. Shao Z, Pan Y, Diao C, Cai J (2019) Cloud detection in remote sensing images based on multiscale features-convolutional neural network. IEEE Trans Geosci Remote Sens 57(6):4062–4076

    Article  Google Scholar 

  144. Shen H, Li H, Qian Y, Zhang L, Yuan Q (2014) An effective thin cloud removal procedure for visible remote sensing images. ISPRS J Photogramm Remote Sens 96:224–235

    Article  Google Scholar 

  145. Shenk WE, Holub RJ, Neff RA (1976) A multispectral cloud type identification method developed for tropical ocean areas with nimbus-3 mrir measurements. Mon Weather Rev 104(3):284–291

    Article  Google Scholar 

  146. Shi M, Xie F, Zi Y, Yin J (2016) Cloud detection of remote sensing images by deep learning. In: 2016 IEEE International geoscience and remote sensing symposium (IGARSS). IEEE, pp 701–704

  147. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  148. Slawinski O, Kowalski JG, Cornillon PC (1991) A neural network approach to cloud detection in avhrr images. In: Neural networks, 1991., IJCNN-91-seattle international joint conference on, vol 1. IEEE, pp 283–288

  149. Specht DF (1990) Probabilistic neural networks. Neural Netw 3 (1):109–118

    Article  Google Scholar 

  150. Stowe LL, Wellemeyer CG, Yeh HYM, Eck TF (1988) Nimbus-7 global cloud climatology. part i: Algorithms and validation. J Clim 1(5):445–470

    Article  Google Scholar 

  151. Strahler AH, Muller JP, Lucht W, Schaaf C, Tsang T, Gao F, Li X, Lewis P, Barnsley MJ (1999) Modis brdf/albedo product: algorithm theoretical basis document version 5.0. MODIS Documentation 23(4):42–47

    Google Scholar 

  152. Sun L, Yang X, Jia S, Jia C, Wang Q, Liu X, Wei J, Zhou X (2020) Satellite data cloud detection using deep learning supported by hyperspectral data. Int J Remote Sens 41(4):1349–1371

    Article  Google Scholar 

  153. Szejwach G (1982) Determination of semi-transparent cirrus cloud temperature from infrared radiances: Application to meteosat. J Appl Meteorol 21 (3):384–393

    Article  Google Scholar 

  154. Tian B, Azimi-Sadjadi MR, Haar THV, Reinke D (2000) Temporal updating scheme for probabilistic neural network with application to satellite cloud classification. IEEE Trans Neural Netw 11(4):903–920

    Article  Google Scholar 

  155. Tuia D, Kellenberger B, Pérez-Suey A, Camps-Valls G (2018) A deep network approach to multitemporal cloud detection. In: IGARSS 2018-2018 IEEE International geoscience and remote sensing symposium. IEEE, pp 4351–4354

  156. Walder P, MacLaren I (2000) Neural network based methods for cloud classification on avhrr images. Int J Remote Sens 21(8):1693–1708

    Article  Google Scholar 

  157. Wallach I, Dzamba M, Heifets A (2015) Atomnet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery. arXiv:1510.02855

  158. Wang L, Chen Y, Tang L, Fan R, Yao Y (2018) Object-based convolutional neural networks for cloud and snow detection in high-resolution multispectral imagers. Water 10(11):1666

    Article  Google Scholar 

  159. Watmough GR, Atkinson PM, Hutton CW (2011) A combined spectral and object-based approach to transparent cloud removal in an operational setting for landsat etm+. Int J Appl Earth Observ Geoinform 13(2):220–227

    Article  Google Scholar 

  160. Watmough GR, Atkinson PM, Hutton CW (2011) A combined spectral and object-based approach to transparent cloud removal in an operational setting for landsat etm+. Int J Appl Earth Observ Geoinform 13(2):220–227

    Article  Google Scholar 

  161. Wei J, Huang W, Li Z, Sun L, Zhu X, Yuan Q, Liu L, Cribb M (2020) Cloud detection for landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches. Remote Sens Environ 248:112005

    Article  Google Scholar 

  162. Welch RM, Kuo KS, Wielicki BA, Sengupta SK, Parker L (1988) Marine stratocumulus cloud fields off the coast of southern california observed using landsat imagery. part i: Structural characteristics. J Appl Meteorol 27(4):341–362

    Article  Google Scholar 

  163. Welch RM, Navar MS, Sengupta SK (1989) The effect of spatial resolution upon texture-based cloud field classifications. J Geophys Res Atmospheres 94 (D12):14767–14781

    Article  Google Scholar 

  164. Welch RM, Sengupta SK, Chen DW (1988) Cloud field classification based upon high spatial resolution textural features: 1. gray level co-occurrence matrix approach. J Geophys Res Atmospheres 93(D10):12663–12681

    Article  Google Scholar 

  165. Welch RM, Sengupta SK, Goroch AK, Rabindra P, Rangaraj N, Navar MS (1992) Polar cloud and surface classification using avhrr imagery: An intercomparison of methods. J Appl Meteorol 31(5):405–420

    Article  Google Scholar 

  166. Widrow B, Hoff ME, et al. (1960) Adaptive switching circuits. In: IRE WESCON Convention record, vol 4. New York, pp 96–104

  167. Wu X, Shi Z (2018) Utilizing multilevel features for cloud detection on satellite imagery. Remote Sens 10(11):1853

    Article  Google Scholar 

  168. Xie F, Shi M, Shi Z, Yin J, Zhao D (2017) Multilevel cloud detection in remote sensing images based on deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

  169. Xie F, Shi M, Shi Z, Yin J, Zhao D (2017) Multilevel cloud detection in remote sensing images based on deep learning. IEEE J Select Topics Appl Earth Observ Remote Sens 10(8):3631–3640

    Article  Google Scholar 

  170. Yamamoto G, Tanaka M, Asano S (1970) Radiative transfer in water clouds in the infrared region. J Atmos Sci 27(2):282–292

    Article  Google Scholar 

  171. Yan Z, Yan M, Sun H, Fu K, Hong J, Sun J, Zhang Y, Sun X (2018) Cloud and cloud shadow detection using multilevel feature fused segmentation network. IEEE Geosci Remote Sens Lett 15(10):1600–1604

    Article  Google Scholar 

  172. Yanan G, Xiaoqun C, Bainian L, Kecheng P (2020) Cloud detection for satellite imagery using deep learning. In: Journal of physics: Conference series, vol 1617. IOP Publishing, p 012089

  173. Yang J, Guo J, Yue H, Liu Z, Hu H, Li K (2019) Cdnet: Cnn-based cloud detection for remote sensing imagery. IEEE Trans Geosci Remote Sens 57(8):6195–6211

    Article  Google Scholar 

  174. Yang J, Lu W, Ma Y, Yao W (2012) An automated cirrus cloud detection method for a ground-based cloud image. J Atmos Ocean Technol 29 (4):527–537

    Article  Google Scholar 

  175. Yhann SR, Simpson JJ (1995) Application of neural networks to avhrr cloud segmentation. IEEE Trans Geosci Remote Sens 33(3):590–604

    Article  Google Scholar 

  176. Yin Z, Ling F, Foody GM (2020) Yun Du. Cloud detection in landsat-8 imagery in google earth engine based on a deep neural network. arXiv:2006.10358

  177. Yoshida T, Omatu S (1994) Neural network approach to land cover mapping. IEEE Trans Geosci Remote Sens 32(5):1103–1109

    Article  Google Scholar 

  178. Yoshida T, Omatu S (1994) Neural network approach to land cover mapping. IEEE Trans Geosci Remote Sens 32(5):1103–1109

    Article  Google Scholar 

  179. You H, Tian S, Yu L, Lv Y (2019) Pixel-level remote sensing image recognition based on bidirectional word vectors. IEEE Trans Geosci Remote Sens 58 (2):1281–1293

    Article  Google Scholar 

  180. Young MJ (1967) Variability in estimating total cloud cover from satellite pictures. J Appl Meteorol 6(3):573–579

    Article  Google Scholar 

  181. Yu D, Deng L (2010) Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Proc Mag 28(1):145–154

    Article  Google Scholar 

  182. Yu J, Li Y, Zheng X, Zhong Y, He P (2020) An effective cloud detection method for gaofen-5 images via deep learning. Remote Sens 12(13):2106

    Article  Google Scholar 

  183. Yu Z, Wang H, Xu F, Jin Y-Q (2016) Polarimetric sar image classification using deep convolutional neural networks. IEEE Geosci Remote Sens Lett 13(12):1935–1939

    Article  Google Scholar 

  184. Yu W, Yang X, Celik T, Sushkova O, Albertini MK (2020) Multifocus image fusion using convolutional neural network. Multimedia Tools And Applications

  185. Yuan K, Meng G, Cheng D, Bai J, Xiang S, Pan C (2017) Efficient cloud detection in remote sensing images using edge-aware segmentation network and easy-to-hard training strategy. In: 2017 IEEE International conference on image processing (ICIP). IEEE, pp 61–65

  186. Zhan Y, Wang J, Shi J, Cheng G, Yao L, Sun W (2017) Distinguishing cloud and snow in satellite images via deep convolutional network. IEEE Geosci Remote Sens Lett 14(10):1785–1789

    Article  Google Scholar 

  187. Zhang J, Lin X, Ning X (2013) Svm-based classification of segmented airborne lidar point clouds in urban areas. Remote Sens 5(8):3749–3775

    Article  Google Scholar 

  188. Zhang J, Zhou Q, Shen X, Li Y (2019) Cloud detection in high-resolution remote sensing images using multi-features of ground objects. J Geovisualiz Spat Anal 3(2):14

    Article  Google Scholar 

  189. Zhong B, Chen W, Wu S, Hu L, Luo X, Liu Q (2017) A cloud detection method based on relationship between objects of cloud and cloud-shadow for chinese moderate to high resolution satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

  190. Zhu H, Wan G (2016) Local contrast preserving technique for the removal of thin cloud in aerial image. Optik-International Journal for Light and Electron Optics 127(2):742–747

    Article  Google Scholar 

  191. Zhu Z, Wang S, Woodcock CE (2015) Improvement and expansion of the fmask algorithm: cloud, cloud shadow, and snow detection for landsats 4–7, 8, and sentinel 2 images. Remote Sens Environ 159:269–277

    Article  Google Scholar 

  192. Zhu Z, Woodcock CE (2012) Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens Environ 118:83–94

    Article  Google Scholar 

  193. Zi Y, Xie F, Jiang Z (2018) A cloud detection method for landsat 8 images based on pcanet. Remote Sens 10(6):877

    Article  Google Scholar 

  194. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evolution Comput 8(2):173–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachana Gupta.

Ethics declarations

Conflict of Interests

The authors do not have any conflicts of interest.

Additional information

Research involving Human Participants and/or Animal

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Nanda, S.J. Cloud detection in satellite images with classical and deep neural network approach: A review. Multimed Tools Appl 81, 31847–31880 (2022). https://doi.org/10.1007/s11042-022-12078-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12078-w

Keywords

Navigation