Skip to main content
Log in

A channel coding information hiding algorithm for images based on uniform cyclic shift

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Robust reversible watermarking algorithms for images have good performance against traditional image processing methods such as compression, noise and filtering. However, when the sender transmits a carrier image over a noisy channel, the quality of the image is significantly affected and the receiver has difficulty recovering the secret information. To address this problem, we change the carrier of secret information from image to channel coding and propose a channel coding information hiding scheme based on uniform cyclic shift algorithm for images. The proposed algorithm, which is not based on a specific protocol, uses the error correction capability of the code to construct a covert channel. The secret information is embedded in the carrier bitstream approximately uniformly by the proposed algorithm, which makes the noise caused by the secret information similar to the random noise of the channel at low signal-to-noise ratio (SNR). We experimentally and analytically give the optimal values of some adjustable parameters and deduce the maximum embedding capacity of the proposed algorithm. Compared with the traditional robust reversible information hiding scheme, the carrier obtained by channel decoding at the receiving end can be the closest to the original carrier, and the secret information can be restored with the lowest bit error rate (BER).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abd El-Latif AA, Abd-El-Atty B, Hossain MS et al (2018) Efficient quantum information hiding for remote medical image sharing. IEEE Access 6:21075–21083. https://doi.org/10.1109/ACCESS.2018.2820603

    Article  Google Scholar 

  2. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156. https://doi.org/10.1109/TIP.2004.828418

    Article  MathSciNet  Google Scholar 

  3. Al-Qerem A, Alauthman M, Almomani A, Gupta BB (2020) IoT transaction processing through cooperative concurrency control on fog–cloud computing environment. Soft Comput 24(8):5695–5711. https://doi.org/10.1007/s00500-019-04220-y

    Article  Google Scholar 

  4. An L, Gao X, Li X, Tao D, Deng C, Li J (2012) Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE Trans Image Process 21(8):3598–3611. https://doi.org/10.1109/TIP.2012.2191564

    Article  MathSciNet  MATH  Google Scholar 

  5. Coatrieux G, Pan W, Cuppens-Boulahia N et al (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Inf Forensics Secur 8(1):111–120. https://doi.org/10.1109/TIFS.2012.2224108

    Article  Google Scholar 

  6. Coltuc D (2011) Improved embedding for prediction-based reversible watermarking. IEEE Trans Inf Forensics Secur 6(3 PART 2):873–882. https://doi.org/10.1109/TIFS.2011.2145372

    Article  Google Scholar 

  7. De Vleeschouwer C, Delaigle JF, Macq B (2003) Circular interpretation of bijective transformations in lossless watermarking for media asset management. IEEE Trans Multimed 5(1):97–105. https://doi.org/10.1109/TMM.2003.809729

    Article  Google Scholar 

  8. Dragoi IC, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790. https://doi.org/10.1109/TIP.2014.2307482

    Article  MathSciNet  MATH  Google Scholar 

  9. Dragoi I, Coltuc D (2015) On local prediction based reversible watermarking. IEEE Trans Image Process 24(4):1244–1246. https://doi.org/10.1109/TIP.2015.2395724

    Article  MathSciNet  MATH  Google Scholar 

  10. Dragoi IC, Coltuc D (2016) Adaptive pairing reversible watermarking. IEEE Trans Image Process 25(5):2420–2422. https://doi.org/10.1109/TIP.2016.2549458

    Article  MathSciNet  MATH  Google Scholar 

  11. Esposito C, Ficco M, Gupta BB (2021) Blockchain-based authentication and authorization for smart city applications. Inf Process Manag 58(2):102468. https://doi.org/10.1016/j.ipm.2020.102468

    Article  Google Scholar 

  12. Gao X, An L, Yuan Y et al (2011) Lossless data embedding using generalized statistical quantity histogram. IEEE Trans Circuits Syst Video Technol 21(8):1061–1070. https://doi.org/10.1109/TCSVT.2011.2130410

    Article  Google Scholar 

  13. Grabska I, Szczypiorski K (2013) Steganography in WiMAX networks. In: International Congress on Ultra Modern Telecommunications and Control Systems and Workshops. pp. 20–27

  14. Harley PMB, Tummala M, McEachen JC (2019) High-throughput covert channels in adaptive rate wireless communication systems. In: International Conference on Electronics, Information, and Communication. pp. 1–7

  15. Huang FJ, Huang JW, Shi YQ (2016) New framework for reversible data hiding in encrypted domain. IEEE Trans Inf Forensics Secur 11(12):2777–2789. https://doi.org/10.1109/Tifs.2016.2598528

    Article  Google Scholar 

  16. Ishtiaq M, Ali W, Shahzad W, Jaffar MA, Nam Y (2018) Hybrid predictor based four-phase adaptive reversible watermarking. IEEE Access 6:13213–13230. https://doi.org/10.1109/ACCESS.2018.2803301

    Article  Google Scholar 

  17. Li D, Deng L, Bhooshan Gupta B, Wang H, Choi C (2019) A novel CNN based security guaranteed image watermarking generation scenario for smart city applications. Inf Sci (Ny) 479:432–447. https://doi.org/10.1016/j.ins.2018.02.060

    Article  Google Scholar 

  18. Li X, Li B, Yang B, Zeng T (2013) General framework to histogram-shifting-based reversible data hiding. IEEE Trans Image Process 22(6):2181–2191. https://doi.org/10.1109/TIP.2013.2246179

    Article  MathSciNet  MATH  Google Scholar 

  19. Li X, Zhang W, Gui X, Yang B (2013) A novel reversible data hiding scheme based on two-dimensional difference-histogram modification. IEEE Trans Inf Forensics Secur 8(7):1091–1100

    Article  Google Scholar 

  20. Li X, Zhang W, Gui X, Yang B (2015) Efficient reversible data hiding based on multiple histograms modification. IEEE Trans Inf Forensics Secur 10(9):2016–2027. https://doi.org/10.1109/TIFS.2015.2444354

    Article  Google Scholar 

  21. Ma H, Yi X, Wu X, et al (2014) A capacity self-adaption information hiding algorithm based on RS code. In: Processing of 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems. IEEE, pp 1–8

  22. Mehta AM, Lanzisera S, Pister KSJ (2008) Steganography in 802.15.4 wireless communication. In: 2nd International Symposium on Advanced Networks and Telecommunication Systems pp 4–6

  23. Ni Z, Shi YQ, Ansari N et al (2008) Robust lossless image data hiding designed for semi-fragile image authentication. IEEE Trans Circuits Syst Video Technol 18(4):497–509. https://doi.org/10.1109/TCSVT.2008.918761

    Article  Google Scholar 

  24. Ou B, Li X, Zhao Y, Ni R, Shi YQ (2013) Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans Image Process 22(12):5010–5021. https://doi.org/10.1109/TIP.2013.2281422

    Article  MathSciNet  MATH  Google Scholar 

  25. Paul G, Mukherjee I (2010) Image sterilization to prevent LSB-based steganographic transmission. arXiv e-prints arXiv:1012.5573

  26. Peng F, Li X, Yang B (2012) Adaptive reversible data hiding scheme based on integer transform. Signal Process 92(1):54–62. https://doi.org/10.1016/j.sigpro.2011.06.006

    Article  Google Scholar 

  27. Petitcolas FAP, Anderson RJ (1999) Evaluation of copyright marking systems. Proc Int Conf Multimed Comput Syst 1:574–579. https://doi.org/10.1109/mmcs.1999.779264

    Article  Google Scholar 

  28. Petitcolas FAP, Anderson RJ, Kuhn MG (1998) Attacks on copyright marking systems. In: Second International Workshop on Information Hiding. pp 218–238

  29. Qin C, Chang CC, Huang YH, Liao LT (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circuits Syst Video Technol 23(7):1109–1118. https://doi.org/10.1109/TCSVT.2012.2224052

    Article  Google Scholar 

  30. Qin JQ, Huang FJ (2019) Reversible data hiding based on multiple two-dimensional histograms modification. IEEE Signal Process Lett 26(6):843–847. https://doi.org/10.1109/Lsp.2019.2909080

    Article  Google Scholar 

  31. Shi YQ, Li X, Zhang X, Wu HT, Ma B (2016) Reversible data hiding: advances in the past two decades. IEEE Access 4:3210–3237. https://doi.org/10.1109/ACCESS.2016.2573308

    Article  Google Scholar 

  32. Tewari A, Gupta BB (2017) Cryptanalysis of a novel ultra-lightweight mutual authentication protocol for IoT devices using RFID tags. J Supercomput 73(3):1085–1102. https://doi.org/10.1007/s11227-016-1849-x

    Article  Google Scholar 

  33. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896. https://doi.org/10.1109/TCSVT.2003.815962

    Article  Google Scholar 

  34. Wang X, Li X, Pei Q (2020) Independent embedding domain based two-stage robust reversible watermarking. IEEE Trans Circuits Syst Video Technol 30(8):2406–2417. https://doi.org/10.1109/TCSVT.2019.2915116

    Article  Google Scholar 

  35. Wang X, Li X, Yang B, Guo Z (2010) Efficient generalized integer transform for reversible watermarking. IEEE Signal Process Lett 17(6):567–570. https://doi.org/10.1109/LSP.2010.2046930

    Article  Google Scholar 

  36. Wang J, Ni J, Zhang X, Shi YQ (2017) Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans Cybern 47(2):315–326. https://doi.org/10.1109/TCYB.2015.2514110

    Article  Google Scholar 

  37. Weng S, Pan JS (2016) Integer transform based reversible watermarking incorporating block selection. J Vis Commun Image Represent 35(November):25–35. https://doi.org/10.1016/j.jvcir.2015.11.005

    Article  Google Scholar 

  38. Weng S, Zhang G, Pan JS, Zhou Z (2017) Optimal PPVO-based reversible data hiding. J Vis Commun Image Represent 48(May):317–328. https://doi.org/10.1016/j.jvcir.2017.05.005

    Article  Google Scholar 

  39. Yin Z, Xiang Y, Zhang X (2020) Reversible data hiding in encrypted images based on multi-MSB prediction and Huffman coding. IEEE Trans Multimed 22(4):874–884. https://doi.org/10.1109/TMM.2019.2936314

    Article  Google Scholar 

  40. Yu C, Li J, Li X, Ren X, Gupta BB (2018) Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77(4):4585–4608. https://doi.org/10.1007/s11042-017-4637-6

    Article  Google Scholar 

  41. Zeng XT, Di Ping L, Pan XZ (2010) A lossless robust data hiding scheme. Pattern Recogn 43(4):1656–1667. https://doi.org/10.1016/j.patcog.2009.09.016

    Article  MATH  Google Scholar 

  42. Zhang W, Hu X, Li X, Yu N (2013) Recursive histogram modification: establishing equivalency between reversible data hiding and lossless data compression. IEEE Trans Image Process 22(7):2775–2785. https://doi.org/10.1109/TIP.2013.2257814

    Article  Google Scholar 

  43. Zielińska E, Szczypiorski K (2011) Direct sequence spread spectrum steganographic scheme for IEEE 802.15.4. In: Processings of 3rd International Conference on Multimedia Information Networking and Security. pp 586–590

  44. Zou L, Sun J, Gao M, Wan W, Gupta BB (2019) A novel coverless information hiding method based on the average pixel value of the sub-images. Multimed Tools Appl 78(7):7965–7980. https://doi.org/10.1007/s11042-018-6444-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liquan Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Chen, L., Wang, Y. et al. A channel coding information hiding algorithm for images based on uniform cyclic shift. Multimed Tools Appl 81, 11279–11300 (2022). https://doi.org/10.1007/s11042-022-12034-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12034-8

Keywords

Navigation