Babaee M, Athar A, Rigoll G (2018) Multiple people tracking using hierarchical deep tracklet re-identification. arXiv:1811.04091
Bera A, Randhavane T, Kubin E, Shaik H, Gray K, Manocha D (2018) Data-driven modeling of group entitativity in virtual environments. In: Spencer SN, Morishima S, Itoh Y, Shiratori T, Yue Y, Lindeman R (eds) Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, VRST 2018. ACM, Tokyo, pp 31:1–31:10
Bergmann P, Meinhardt T, Leal-taixė L (2019) Tracking without bells and whistles. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019. IEEE, Seoul, pp 941–951
Bernardin K, Stiefelhagen R (2008) Evaluating multiple object tracking performance: The CLEAR MOT metrics. EURASIP J Image Video Process
Bewley A, Ge Z, Ott L, Ramos FT, Upcroft B (2016) Simple online and realtime tracking. In: 2016 IEEE International conference on image processing, ICIP 2016. IEEE, Phoenix, pp 3464–3468
Bochinski E, Eiselein V, Sikora T (2017) High-speed tracking-by-detection without using image information. In: 14Th IEEE international conference on advanced video and signal based surveillance, AVSS 2017. IEEE Computer Society, Lecce, pp 1–6
Brasȯ G., Leal-taixė L (2020) Learning a neural solver for multiple object tracking. In: International conference on computer vision and pattern recognition (CVPR). IEEE, pp 6246–6256
Cao Z, Simon T, Wei S, Sheikh Y (2017) Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1302–1310
Carrara F, Elias P, Sedmidubsky J, Zezula P (2019) Lstm-based real-time action detection and prediction in human motion streams. Multimed Tools Appl 78(19):27,309–27,331
Article
Google Scholar
Chen L, Ai H, Chen R, Zhuang Z (2019) Aggregate tracklet appearance features for multi-object tracking. IEEE Signal Process Lett 26(11):1613–1617
Article
Google Scholar
Choi W, Savarese S (2012) A unified framework for multi-target tracking and collective activity recognition. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid C (eds) Proceedings, Part IV, Lecture Notes in Computer Science, vol 7575. Springer, Florence, pp 215–230
Chu J, Tu X, Leng L, Miao J (2020) Double-channel object tracking with position deviation suppression. IEEE Access 8:856–866
Article
Google Scholar
Chu P, Ling H (2019) Famnet: Joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking. In: 2019 IEEE/CVF International conference on computer vision, ICCV 2019. IEEE, Seoul, pp 6171–6180
Cong R, Lei J, Fu H, Cheng M, Lin W, Huang Q (2019) Review of visual saliency detection with comprehensive information. IEEE Trans Circ Syst Video Technol 29(10):2941–2959
Article
Google Scholar
Cristani M, Bazzani L, Paggetti G, Fossati A, Tosato D, Bue AD, Menegaz G, Murino V (2011) Social interaction discovery by statistical analysis of f-formations. In: British machine vision conference, BMVC 2011. Proceedings. BMVA Press, Dundee, pp 1–12
Davenport CB (1917) Inheritance of stature. Genetics 2(4):313–389
Article
Google Scholar
Dendorfer P, Rezatofighi H, Milan A, Shi J, Cremers D, Reid I, Roth S, Schindler K, Leal-Taixé L. (2003) Mot20: A benchmark for multi object tracking in crowded scenes. arXiv:2003.09003[cs]. arXiv:1906.04567
Evangelidis GD, Psarakis EZ (2008) Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans Pattern Anal Mach Intell 30(10):1858–1865
Article
Google Scholar
Fan D, Wang W, Cheng M, Shen J (2019) Shifting more attention to video salient object detection. In: IEEE Conference on computer vision and pattern recognition, CVPR 2019. Computer Vision Foundation / IEEE, Long Beach, pp 8554–8564
Felzenszwalb PF, Girshick RB, McAllester DA, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645
Article
Google Scholar
Feng W, Hu Z, Wu W, Yan J, Ouyang W (2019) Multi-object tracking with multiple cues and switcher-aware classification. arXiv:1901.06129
Fu K, Zhao Q, Gu IY, Yang J (2019) Deepside: A general deep framework for salient object detection. Neurocomputing 356:69–82
Article
Google Scholar
Henschel R, Leal-taixė L, Cremers D, Rosenhahn B (2018) Fusion of head and full-body detectors for multi-object tracking. In: 2018 IEEE Conference on computer vision and pattern recognition workshops, CVPR workshops 2018. IEEE Computer Society, Salt Lake City, pp 1428–1437
Henschel R, Zou Y, Rosenhahn B (2019) Multiple people tracking using body and joint detections. In: IEEE Conference on computer vision and pattern recognition workshops, CVPR workshops 2019. Computer Vision Foundation / IEEE, Long Beach, p 0
Hu T, Zhu X, Wang S, Duan L (2019) Human interaction recognition using spatial-temporal salient feature. Multimedia Tools and Applications 78(20):28,715–28,735
Article
Google Scholar
Insafutdinov E, Andriluka M, Pishchulin L, Tang S, Levinkov E, Andres B, Schiele B (2017) Arttrack: Articulated multi-person tracking in the wild. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017. IEEE Computer Society, Honolulu, pp 1293–1301
Iqbal U, Milan A, Gall J (2017) Posetrack: Joint multi-person pose estimation and tracking. In: 2017 IEEE Conference on computer vision and pattern recognition, CVPR 2017. IEEE Computer Society, Honolulu, pp 4654–4663
Jonker R, Volgenant A (1987) A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4):325–340
MathSciNet
Article
Google Scholar
Kalman RE (1960) A New Approach to Linear Filtering and Prediction Problems. J Basic Eng 82(1):35–45
MathSciNet
Article
Google Scholar
Kim DY, Jeon M (2014) Data fusion of radar and image measurements for multi-object tracking via kalman filtering. Inf Sci 278:641–652. https://doi.org/10.1016/j.ins.2014.03.080
MathSciNet
Article
Google Scholar
Kok VJ, Lim MK, Chan CS (2016) Crowd behavior analysis: A review where physics meets biology. Neurocomputing 177:342–362
Article
Google Scholar
Krausz B, Bauckhage C (2012) Loveparade 2010: Automatic video analysis of a crowd disaster. Comput Vis Image Underst 116(3):307–319
Article
Google Scholar
Leal-Taixė L, Pons-Moll G, Rosenhahn B (2011) Everybody needs somebody: Modeling social and grouping behavior on a linear programming multiple people tracker. In: IEEE International conference on computer vision workshops, ICCV 2011 workshops. IEEE computer society, Barcelona, pp 120–127
Li H, Li Y, Porikli F (2016) Deeptrack: Learning discriminative feature representations online for robust visual tracking. IEEE Trans Image Process 25(4):1834–1848. https://doi.org/10.1109/TIP.2015.2510583
MathSciNet
Article
Google Scholar
Li K, Yuen C, Kanhere SS, Hu K, Zhang W, Jiang F, Liu X (2019) An experimental study for tracking crowd in smart cities. IEEE Syst J 13 (3):2966–2977
Article
Google Scholar
Li S, Chu J, Zhong G, Leng L, Miao J (2020) Robust visual tracking with occlusion judgment and re-detection. IEEE Access 8:122, 772–122, 781
Article
Google Scholar
Li Y, Huang C, Nevatia R (2009) Learning to associate: Hybridboosted multi-target tracker for crowded scene. In: 2009 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2009). IEEE Computer Society, Miami, pp 2953–2960
Liciotti D, Contigiani M, Frontoni E, Mancini A, Zingaretti P, Placidi V (2014) Shopper analytics: A customer activity recognition system using a distributed RGB-d camera network. In: Video analytics for audience measurement - first international workshop, VAAM 2014. Revised selected papers, lecture notes in computer science, vol 8811. Springer, Stockholm, pp 146–157
Lu X, Ma C, Ni B, Yang X, Reid ID, Yang M (2018) Deep regression tracking with shrinkage loss. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y (eds) Computer Vision - ECCV 2018 - 15th European Conference, Proceedings, Part XIV, Lecture Notes in Computer Science, vol 11218. Springer, Munich, pp 369–386
Mahmoudi N, Ahadi SM, Rahmati M (2019) Multi-target tracking using cnn-based features: CNNMTT. Multimed Tools Appl 78(6):7077–7096
Article
Google Scholar
Mehmood R, Katib SSI, Chlamtac I (2020) Smart infrastructure and applications. Springer
Milan A, Leal-Taixé L, Reid ID, Roth S, Schindler K (2016) MOT16: A benchmark for multi-object tracking. arXiv:1603.00831
Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Indust Appl Math 5(1):32–38
MathSciNet
Article
Google Scholar
Pan G, Qi G, Zhang W, Li S, Wu Z, Yang LT (2013) Trace analysis and mining for smart cities: issues, methods, and applications. IEEE Commun Mag 51(6)
Pirsiavash H, Ramanan D, Fowlkes CC (2011) Globally-optimal greedy algorithms for tracking a variable number of objects. In: The 24th IEEE conference on computer vision and pattern recognition, CVPR 2011. IEEE Computer Society, Colorado Springs, pp 1201–1208
Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6517–6525
Ren S, He K, Girshick RB, Sun J (2017) Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149
Article
Google Scholar
Salmerȯn-García JJ, Van den Dries S, Del Río FD, Estėvez AM, Sevillano-Ramos JL, Van de Molengraft MJG (2019) Towards a cloud-based automated surveillance system using wireless technologies. Multimed Syst 25(5):535–549
Article
Google Scholar
Sedmidubskẏ J, Elias P, Zezula P (2018) Effective and efficient similarity searching in motion capture data. Multimed Tools Appl 77 (10):12, 073–12,094
Article
Google Scholar
Sedmidubsky J, Elias P, Zezula P (2019) Searching for variable-speed motions in long sequences of motion capture data. Inf Syst 80:148–158
Article
Google Scholar
Sheng H, Zhang Y, Chen J, Xiong Z, Zhang J (2019) Heterogeneous association graph fusion for target association in multiple object tracking. IEEE Trans Circ Syst Video Techn 29(11):3269–3280
Article
Google Scholar
Sime JD (1995) Crowd psychology and engineering. Safety Sci 21 (1):1–14
MathSciNet
Article
Google Scholar
Sun K, Xiao B, Liu D, Wang J (2019) Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 5693–5703
Tran KN, Gala A, Kakadiaris IA, Shah SK (2014) Activity analysis in crowded environments using social cues for group discovery and human interaction modeling. Pattern Recognit Lett 44:49–57
Article
Google Scholar
Vascon S, Mequanint EZ, Cristani M, Hung H, Pelillo M, Murino V (2016) Detecting conversational groups in images and sequences: A robust game-theoretic approach. Comput Vis Image Underst 143:11–24
Article
Google Scholar
Wang G, Wang Y, Zhang H, Gu R, Hwang J (2019) Exploit the connectivity: Multi-object tracking with trackletnet. In: Amsaleg L, Huet B, Larson MA, Gravier G, Hung H, Ngo C, Ooi WT (eds) Proceedings of the 27th ACM International Conference on Multimedia, MM 2019. ACM, Nice, pp 482–490
Wojke N, Bewley A, Paulus D (2017) Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International conference on image processing, ICIP 2017. IEEE, Beijing, pp 3645–3649
Wu H, Shao J, Xu X, Ji Y, Shen F, Shen HT (2018) Recognition and detection of two-person interactive actions using automatically selected skeleton features. IEEE Trans Hum Mach Syst 48(3):304–310
Article
Google Scholar
Xu R, Nikouei SY, Chen Y, Polunchenko A, Song S, Deng C, Faughnan TR (2018) Real-time human objects tracking for smart surveillance at the edge. In: 2018 IEEE International conference on communications, ICC 2018. IEEE, Kansas City, pp 1–6
Yang B, Nevatia R (2012) An online learned CRF model for multi-target tracking. In: 2012 IEEE Conference on computer vision and pattern recognition. IEEE Computer Society, Providence, pp 2034–2041
Yang F, Choi W, Lin Y (2016) Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016. IEEE Computer Society, Las Vegas, pp 2129–2137
Yigitcanlar T, Butler L, Windle E, Desouza KC, Mehmood R, Corchado JM (2020) Can building “artificially intelligent cities” safeguard humanity from natural disasters, pandemics, and other catastrophes? an urban scholar’s perspective. Sensors 20(10):2988
Article
Google Scholar
Yoon K, Gwak J, Song Y, Yoon Y, Jeon M (2020) Oneshotda: Online multi-object tracker with one-shot-learning-based data association, vol 8
Yuan Y, Chu J, Leng L, Miao J, Kim B (2020) A scale-adaptive object-tracking algorithm with occlusion detection. EURASIP J Image Video Process 2020(1):7
Article
Google Scholar
Zhang H, Hong X (2019) Recent progresses on object detection: a brief review. Multimed Tools Appl 78(19):27, 809–27, 847
Article
Google Scholar
Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. In: 2008 IEEE Computer society conference on computer vision and pattern recognition (CVPR 2008). IEEE Computer Society, Anchorage