Skip to main content

An image encryption scheme based on chaotic logarithmic map and key generation using deep CNN

Abstract

A secure and reliable image encryption scheme is presented, which depends on a novel chaotic log-map, deep convolution neural network (CNN) model, and bit reversion operation for the manipulation process. CNN is utilized to generate a public key to be based on the image in order to enhance the key sensitivity of the scheme. Initial values and control parameters are then obtained from the key to be used in the chaotic log-map, and thus a chaotic sequence is produced for the encrypting operations. The scheme then encrypts the images by scrambling and manipulating the pixels of images through four operations: permutation, DNA encoding, diffusion, and bit reversion. The encryption scheme is precisely examined for the well-known images in terms of various cryptanalyses such as key-space, key sensitivity, information entropy, histogram, correlation, differential attack, noisy attack, and cropping attack. To corroborate the image encryption scheme, the visual and numerical results are even compared with available scores of the state of the art. Therefore, the proposed log-map-based image encryption scheme is successfully verified and validated by superior absolute and comparative results. As future work, the proposed log-map can be extended to combinational multi-dimensional with existing efficient chaotic maps.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdulla AA, Sellahewa H, Jassim SA (2019) improving embedding efficiency for digital steganography by exploiting similarities between secret and cover images. Multimed Tools Appl 7813(78):17799–17823. https://doi.org/10.1007/S11042-019-7166-7

    Article  Google Scholar 

  2. Abdulla AA, Sellahewa H, Jassim SA (2014) Stego quality enhancement by message size reduction and Fibonacci bit-plane mapping. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8893:151–166. https://doi.org/10.1007/978-3-319-14054-4_10

    Article  Google Scholar 

  3. Alawida M, Samsudin A, Sen TJ et al (2019) A new hybrid digital chaotic system with applications in image encryption. Signal Process 160:45–58. https://doi.org/10.1016/j.sigpro.2019.02.016

    Article  Google Scholar 

  4. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16:2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  5. Asgari-Chenaghlu M, Balafar MA, Feizi-Derakhshi MR (2019) A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process 157:1–13. https://doi.org/10.1016/j.sigpro.2018.11.010

    Article  Google Scholar 

  6. Asgari-Chenaghlu M, Feizi-Derakhshi MR, Nikzad-Khasmakhi N et al (2021) Cy: chaotic yolo for user intended image encryption and sharing in social media. Inf Sci (Ny) 542:212–227. https://doi.org/10.1016/j.ins.2020.07.007

    Article  Google Scholar 

  7. Bao L, Yi S, Zhou Y (2017) Combination of Sharing Matrix and Image Encryption for Lossless (k,n)-Secret Image Sharing. IEEE Trans Image Process 26:5618–5631. https://doi.org/10.1109/TIP.2017.2738561

    Article  MathSciNet  MATH  Google Scholar 

  8. Briggs K (1990) An improved method for estimating Liapunov exponents of chaotic time series. Phys Lett A 151:27–32. https://doi.org/10.1016/0375-9601(90)90841-B

    Article  MathSciNet  Google Scholar 

  9. Capelo L (2018) Beginning application development with TensorFlow and Keras: learn to design, develop, train, and deploy TensorFlow and Keras models as real-world applications. Packt Publishing

  10. Chai X, Zheng X, Gan Z et al (2018) An image encryption algorithm based on chaotic system and compressive sensing. Signal Process 148:124–144. https://doi.org/10.1016/j.sigpro.2018.02.007

    Article  Google Scholar 

  11. Chai X, Fu X, Gan Z et al (2019) A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process 155:44–62. https://doi.org/10.1016/j.sigpro.2018.09.029

    Article  Google Scholar 

  12. Chai X, Gan Z, Yuan K et al (2019) A novel image encryption scheme based on DNA sequence operations and chaotic systems. Neural Comput Appl 31:219–237. https://doi.org/10.1007/s00521-017-2993-9

    Article  Google Scholar 

  13. Chai X, Bi J, Gan Z et al (2020) Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process 176:107684. https://doi.org/10.1016/j.sigpro.2020.107684

    Article  Google Scholar 

  14. Chen J, Chen L, Zhou Y (2020) Cryptanalysis of a DNA-based image encryption scheme. Inf Sci (Ny) 520:130–141. https://doi.org/10.1016/j.ins.2020.02.024

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen C, Sun K, He S (2020) An improved image encryption algorithm with finite computing precision. Signal Process 168:1–10. https://doi.org/10.1016/j.sigpro.2019.107340

    Article  Google Scholar 

  16. Chen X, Li L, Sharma A et al (2021) The Application of Convolutional Neural Network Model in Diagnosis and Nursing of MR Imaging in Alzheimer's Disease. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/S12539-021-00450-7

  17. Enginoğlu S, Erkan U, Memiş S (2019) Pixel similarity-based adaptive Riesz mean filter for salt-and-pepper noise removal. Multimed Tools Appl 78:35401–35418. https://doi.org/10.1007/s11042-019-08110-1

    Article  Google Scholar 

  18. Enayatifar R, Guimarães FG, Siarry P (2019) Index-based permutation-diffusion in multiple-image encryption using DNA sequence. Opt Lasers Eng 115:131–140. https://doi.org/10.1016/j.optlaseng.2018.11.017

    Article  Google Scholar 

  19. Erkan U,  Toktas A, Toktas F et al (2022) 2D eπ-map for image encryption. Inf Sci (Ny).  https://doi.org/10.1016/j.ins.2021.12.126

    Article  Google Scholar 

  20. Farah MAB, Guesmi R, Kachouri A et al (2020) A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt Laser Technol 121:105777. https://doi.org/10.1016/j.optlastec.2019.105777

    Article  MATH  Google Scholar 

  21. Gao Y, Chen X, Ying Z, Parini C (2007) Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal. IEEE Trans Antennas Propag 55:3433–3441. https://doi.org/10.1109/TAP.2007.910353

    Article  Google Scholar 

  22. Hanis S, Amutha R (2019) A fast double-keyed authenticated image encryption scheme using an improved chaotic map and a butterfly-like structure. Nonlinear Dyn 95:421–432. https://doi.org/10.1007/s11071-018-4573-7

    Article  Google Scholar 

  23. Haque AKMB, Bhushan B, Dhiman G (2021) Conceptualizing smart city applications: requirements, architecture, security issues, and emerging trends. Expert Syst https://doi.org/10.1111/EXSY.12753

  24. He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 770–778. https://doi.org/10.1109/CVPR.2016.90

  25. Houssein EH, Hussain K, Abualigah L et al (2021) An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation. Knowledge-Based Syst 229:107348. https://doi.org/10.1016/J.KNOSYS.2021.107348

    Article  Google Scholar 

  26. Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci (Ny) 480:403–419. https://doi.org/10.1016/j.ins.2018.12.048

    Article  Google Scholar 

  27. Hua Z, Zhu Z, Yi S et al (2021) Cross-plane colour image encryption using a two-dimensional logistic tent modular map. Inf Sci (Ny) 546:1063–1083. https://doi.org/10.1016/j.ins.2020.09.032

    Article  MathSciNet  Google Scholar 

  28. Huang G, Liu Z, Van Der Maaten L et al (2017) Densely connected convolutional networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017 2017-January:2261–2269. https://doi.org/10.1109/CVPR.2017.243

  29. Huo D, Zhu Z, Wei L et al (2021) A visually secure image encryption scheme based on 2D compressive sensing and integer wavelet transform embedding. Opt Commun 492:126976. https://doi.org/10.1016/J.OPTCOM.2021.126976

    Article  Google Scholar 

  30. Kolesnikov A, Beyer L, Zhai X et al (2019) Big Transfer (BiT): General Visual Representation Learning. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 12350(LNCS):491–507

    Google Scholar 

  31. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the International Conference on Neural Information Processing Systems. pp. 1097–1105

  32. Kumar V, Malik N, Dhiman G et al (2021) Scalable and storage efficient dynamic key management scheme for wireless sensor network. Wirel Commun Mob Comput 2021:. https://doi.org/10.1155/2021/5512879

  33. Lan R, He J, Wang S et al (2018) Integrated chaotic systems for image encryption. Signal Process 147:133–145. https://doi.org/10.1016/j.sigpro.2018.01.026

    Article  Google Scholar 

  34. Liu Y, Qin Z, Liao X, Wu J (2020) Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled sine map. Nonlinear Dyn 100:2917–2931. https://doi.org/10.1007/s11071-020-05654-y

    Article  Google Scholar 

  35. Luo Y, Lin J, Liu J et al (2019) A robust image encryption algorithm based on Chua’s circuit and compressive sensing. Signal Process 161:227–247. https://doi.org/10.1016/j.sigpro.2019.03.022

    Article  Google Scholar 

  36. Mansouri A, Wang X (2020) A novel one-dimensional sine powered chaotic map and its application in a new image encryption scheme. Inf Sci (Ny) 520:46–62. https://doi.org/10.1016/j.ins.2020.02.008

    Article  MathSciNet  MATH  Google Scholar 

  37. Namasudra S, Roy P, Vijayakumar P et al (2017) Time efficient secure DNA based access control model for cloud computing environment. Futur Gener Comput Syst 73:90–105. https://doi.org/10.1016/j.future.2017.01.017

    Article  Google Scholar 

  38. Natarajan Y, Srihari K, Dhiman G et al (2021) An IoT and machine learning-based routing protocol for reconfigurable engineering application. IET Communications. https://doi.org/10.1049/CMU2.12266

  39. Nusse HE, Yorke JA, Kostelich EJ (1994) Bifurcation diagrams. In: Dynamics: numerical explorations. Springer, New York, NY, pp 229–268

    Chapter  Google Scholar 

  40. Oliva D, Esquivel-Torres S, Hinojosa S et al (2021) Opposition-based moth swarm algorithm. Expert Syst Appl 184:115481. https://doi.org/10.1016/J.ESWA.2021.115481

    Article  Google Scholar 

  41. Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  42. Sahoo AK, Panigrahi TK, Dhiman G et al (2021) Enhanced emperor penguin optimization algorithm for dynamic economic dispatch with renewable energy sources and microgrid. J Intell Fuzzy Syst 40:9041–9058. https://doi.org/10.3233/JIFS-201483

    Article  Google Scholar 

  43. Sewak M, Karim R, Pujari P (2018) Practical convolutional neural networks. Packt Publishing

  44. Singh PD, Kaur R, Singh KD et al (2021) A novel ensemble-based classifier for detecting the COVID-19 disease for infected patients. Inf Syst Front 2021:1–17. https://doi.org/10.1007/S10796-021-10132-W

    Article  Google Scholar 

  45. Sujatha E, Chilambuchelvan A (2018) Multimodal biometric authentication algorithm using Iris, palm print, face and signature with encoded DWT. Wirel Pers Commun 99:23–34. https://doi.org/10.1007/S11277-017-5034-1

    Article  Google Scholar 

  46. Sun C, Shrivastava A, Singh S et al (2017) Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. 2017 IEEE International Conference on Computer Vision (ICCV) pp. 843–852. https://doi.org/10.1109/ICCV.2017.97

  47. Suri S, Vijay R (2020) A Pareto-optimal evolutionary approach of image encryption using coupled map lattice and DNA. Neural Comput Appl 32:11859–11873. https://doi.org/10.1007/s00521-019-04668-x

  48. Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1-9. https://doi.org/10.1109/CVPR.2015.7298594

  49. Talhaoui MZ, Wang X (2021) A new fractional one dimensional chaotic map and its application in high-speed image encryption. Inf Sci (Ny) 550:13–26. https://doi.org/10.1016/j.ins.2020.10.048

  50. Tan M, Le QV (2019) EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning pp. 6105–6114.

  51. Toktas A, Erkan U (2021) 2D fully chaotic map for image encryption constructed through a quadruple-objective optimization via artificial bee colony algorithm. Neural Comput & Applic. https://doi.org/10.1007/s00521-021-06552-z

  52. Toktas A, Erkan U, Toktas F et al (2021) Chaotic Map Optimization for Image Encryption Using Triple Objective Differential Evolution Algorithm. IEEE Access 9:127814-127832. https://doi.org/10.1109/ACCESS.2021.3111691

  53. Toktas A, Erkan U, Ustun D (2021) An image encryption scheme based on an optimal chaotic map derived by multi-objective optimization using ABC algorithm. Nonlinear Dyn 105:1885–1909. https://doi.org/10.1007/s11071-021-06675-x

    Article  Google Scholar 

  54. Wang X, Gao S (2020) Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf Sci (Ny) 539:195–214. https://doi.org/10.1016/j.ins.2020.06.030

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang H, Xiao D, Chen X et al (2018) Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map. Signal Process 144:444–452. https://doi.org/10.1016/j.sigpro.2017.11.005

    Article  Google Scholar 

  56. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for Deoxyribose nucleic acid. Nature 171(4356):737–738 https://doi.org/10.1038/171737a0

    Article  Google Scholar 

  57. Wen W, Wei K, Zhang Y et al (2020) Colour light field image encryption based on DNA sequences and chaotic systems. Nonlinear Dyn 99:1587–1600. https://doi.org/10.1007/s11071-019-05378-8

    Article  Google Scholar 

  58. Wu Y, Noonan JP, Agaian S (2011) NPCR and UACI randomness tests for image encryption. Cyber J: Multi J Sci Technol J Selected Areas in Telecomm 4: 31–38

  59. Wu J, Liao X, Yang B (2018) Image encryption using 2D Hénon-sine map and DNA approach. Signal Process 153:11–23. https://doi.org/10.1016/j.sigpro.2018.06.008

    Article  Google Scholar 

  60. Wu Y, Zhang L, Qian T et al (2021) Content-adaptive image encryption with partial unwinding decomposition. Signal Process 181:107911. https://doi.org/10.1016/j.sigpro.2020.107911

    Article  Google Scholar 

  61. Xuejing K, Zihui G (2020) A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process Image Commun 80:1–11. https://doi.org/10.1016/j.image.2019.115670

    Article  Google Scholar 

  62. Yang F, Mou J, Liu J et al (2020) Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application. Signal Process 169:1–16. https://doi.org/10.1016/j.sigpro.2019.107373

    Article  Google Scholar 

  63. Yang Y, Wang L, Duan S et al (2021) Dynamical analysis and image encryption application of a novel memristive hyperchaotic system. Opt Laser Technol 133:106553. https://doi.org/10.1016/j.optlastec.2020.106553

    Article  Google Scholar 

  64. Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process Image Commun 29:902–913. https://doi.org/10.1016/j.image.2014.06.012

    Article  Google Scholar 

  65. Zhang F, Kodituwakku HADE, Hines JW et al (2019) Multilayer data-driven cyber-attack detection system for industrial control systems based on network, system, and process data. IEEE Trans Ind Informatics 15:4362–4369. https://doi.org/10.1109/TII.2019.2891261

    Article  Google Scholar 

  66. Zheng P, Huang J (2018) Efficient encrypted images filtering and transform coding with Walsh-Hadamard transform and parallelization. IEEE Trans Image Process 27:2541–2556. https://doi.org/10.1109/TIP.2018.2802199

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhou Y, Sharma A, Masud M et al (2021) Urban rain flood ecosystem design planning and feasibility study for the enrichment of smart cities. Sustain 13(9):5205. https://doi.org/10.3390/SU13095205

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by University of Economics Ho Chi Minh City, Vietnam. Fund receiver: Dr. Dang Ngoc Hoang Thanh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Erkan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkan, U., Toktas, A., Enginoğlu, S. et al. An image encryption scheme based on chaotic logarithmic map and key generation using deep CNN. Multimed Tools Appl 81, 7365–7391 (2022). https://doi.org/10.1007/s11042-021-11803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11803-1

Keywords