Skip to main content

Advertisement

Log in

Robust and real-time object recognition based on multiple fractal dimension

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

We proposes a multiple fractal dimensions (MFD) method for robust object description. MFD is an effective feature extraction approach, which is first calculated based on a phase angle quantization method to categorize the points of the input image. And then fractal dimensions are calculated to describe the distribution of feature pattern characterized as the intrinsic property of the general objects, i.e., land scene, face and pedestrian. We theoretically proven that our MFD is shown to be invariant to local variations, i.e., Bi-Lipschitz, which is a desirable characteristic for objects, such as land-scene images, face and pedestrian due to the existence of scale variations, local variations and illumination variations in those images. The proposed method is extensively evaluated on land-use scene recognition, face recognition, expression recognition, and pedestrian detection. The experimental results on UC Merced 21-class scene dataset, AR, JAFFE and INRIA pedestrian databases show that our method achieves superior performances over several state-of-the-art methods in terms of recognition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ansuini C, Cavallo A, Koul A, Jacono M, Yang Y, Becchio C (2015) Predicting object size from hand kinematics: a temporal perspective. PLoS ONE 10(3):e0120432

    Article  Google Scholar 

  2. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167

    Article  Google Scholar 

  3. Chen C, Zhang B, Su H, Li W, Wang L (2016) Land-use scene classification using multi-scale completed local binary patterns. Signal Image Video Process. SIViP 10:745–752

    Article  Google Scholar 

  4. Chen C, Liu K, Kehtarnavaz N (2016) Real-time human action recognition based on depth motion maps. J Real-Time Image Process 12(1):155–163

    Article  Google Scholar 

  5. Cheriyadat AM (2014) Unsupervised feature learning for aerial scene classification. IEEE Trans Geosci Remote Sens 52(1):439–451

    Article  Google Scholar 

  6. Conci A, Monteiro LH (2000) Multifractal characterization of texture-based segmentation. In: Proceedings of the ICIP, pp 792–795

  7. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. Proc CVPR 1:886–893

    Google Scholar 

  8. Espinal F, Jawerth BD, Kubota T (1998) Wavelet-based fractal signature analysis for automatic target recognition. Opt Eng 37(1):166–174

    Article  Google Scholar 

  9. Fan J, Song H, Zhang K, Liu Q, Lian W (2018) Complementary tracking via dual color clustering and spatio-temporal regularized correlation learning. IEEE Access 6:56526–56538

    Article  Google Scholar 

  10. Han J, He S, Qian X, Wang D, Guo L, Liu T (2013) An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Trans Circuits Syst Video Technol 23(12):2009–2021

    Article  Google Scholar 

  11. Han J, Zhang D, Hu X, Guo L, Ren J, Wu F (2015) Background prior-based salient object detection via deep reconstruction residual. IEEE Trans Circuits Syst Video Technol 25(8):1309–1321

    Article  Google Scholar 

  12. Huang L, Chen C, Li W, Du Q (2016) Remote sensing image scene classification using multi-scale completed local binary patterns and fisher vectors. Remote Sens 8(6):483

    Article  Google Scholar 

  13. Kam L, Blanc-Talon J (2000) Are multifractal multipermuted multinomial measures good enough for unsupervised image segmentation? In: Proceedings of the CVPR, pp 58–63

  14. Kaplan LM (1999) Extended fractal analysis for texture classification and segmentation. IEEE Trans PAMI 8(11):1572–1585

    Google Scholar 

  15. Li T, Song H, Zhang K, Liu Q, Lian W (2019) Low-rank weighted co-saliency detection via efficient manifold ranking. Multimed Tools Appl 78:21309–21324

    Article  Google Scholar 

  16. Liang J, Chen C, Yi Y, Xu X, Ding M (2017) Bilateral two-dimensional neighborhood preserving discriminant embedding for face recognition. IEEE Access 5:17201–17212

    Article  Google Scholar 

  17. Liu K, Kehtarnavaz N (2016) Real-time robust vision-based hand gesture recognition using stereo images. J Real-Time Image Process 11(1):201–209

    Article  Google Scholar 

  18. Martinez AM, Benavente R (1998) The AR face database. CVC Technical report #24, June 1998

  19. Mohan A, Papageorgiou C, Poggio T (2001) Example-based object detection in images by components. IEEE Trans PAMI 23(4):349–360

    Article  Google Scholar 

  20. Mu Y, Yan S, Liu Y, Huang T, Zhou B (2008) Discriminative local binary patterns for human detection in personal album. In: Proceedings of the CVPR

  21. Papageorgiou C, Poggio T (2000) A trainable system for object detection. IJCV 38(1):15–33

    Article  Google Scholar 

  22. Peitgen H-O, Jürgens H, Saupe D (1993) Chaos and fractals: new frontiers of science. Springer, Berlin

    MATH  Google Scholar 

  23. Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans PAMI 6:518–523

    Article  Google Scholar 

  24. Qian Du, Nekovei R (2009) Fast real-time onboard processing of hyperspectral imagery for detection and classification. J Real-Time Image Process 4(3):273–286

    Article  Google Scholar 

  25. Tolle CR, McJunkin TR, Gorsich DJ (2003) Suboptimal minimum cluster volume cover-based method for measuring fractal dimension. IEEE Trans PAMI 25(1):32–41

    Article  Google Scholar 

  26. Tuzel O, Porikli F, Meer P (2007) Human detection via classification on riemannian manifolds. In: Proceedings of the CVPR, pp 1–8

  27. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the CVPR

  28. Wang X, Han TX, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: Proceedings of the ICCV, Kyoto

  29. Wright J, Ganesh A, Zhou Z, Wagner A, Ma Yi (2008) Robust face recognition via sparse representation. IEEE Int Conf Autom Face Gesture Recogn. https://doi.org/10.1109/AFGR.2008.4813404

    Article  Google Scholar 

  30. Xu R, Zhang B, Ye Q, Jiao J (2010) Cascaded L1-norm mimimzation learning (CLML) classifier for human detection. In: Proceedings of the CVPR

  31. Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Int J Comput Vis 83(1):85–100

    Article  Google Scholar 

  32. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th ACM SIGSPATIAL international conference on advances in geographic information systems, San Jose, CA, pp 270–279

  33. Zhang B, Li Z, Perina A, Del Bue A, Murino V (2016) Adaptive local movement modelling (ALMM) for object tracking. IEEE TCSVT

  34. Zhang B, Gao YS, Zhao SQ, Liu JZ (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  35. Zhang B, Wang H, Zheng H, Hou Y, He C, Yu B (2017) Pedestrian detection based on multifractal analysis. ICIEA

  36. Zhu Q, Avidan S, Yeh MC, Cheng KT (2006) Fast human detection using a cascade of histograms of oriented gradients. Proc CVPR 2:1491–1498

    Google Scholar 

  37. Zou J, Li W, Chen C, Du Q (2016) Scene classification using local and global features with collaborative representation fusion. Inf Sci 348:209–226. https://doi.org/10.1016/j.ins.2016.02.021

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by “Initial funding for doctoral research of Guiyang University” and Project No. (GYU-KY - [2021]). We also thank Yanlong Hou for his work on the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochang Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, B. & Chen, W. Robust and real-time object recognition based on multiple fractal dimension. Multimed Tools Appl 80, 36585–36603 (2021). https://doi.org/10.1007/s11042-021-11447-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11447-1

Keywords

Navigation