Skip to main content

Advertisement

Log in

Classification of neonatal diseases with limited thermal Image data

  • 1212: Deep Learning Techniques for Infrared Image/Video Understanding
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Evaluation of body temperature and thermal symmetry in neonates is important in monitoring health conditions and predicting potential risks. With thermography, which is a harmless and noncontact method, diseases in neonates can be detected at an early stage using appropriate artificial intelligence techniques. Medical imaging is limited due to neonates’ sensitivity to the thermal environment. This study proposes a classification model for classification problems with limited data (specifically, neonatal diseases) using data augmentation and artificial intelligence methodology. In the study, a multi-class classification was performed by combining images produced by data augmentation and employing the ability of convolutional neural networks to learn important features from the images, with 4 classes ranging from 8 to 16 newborns in each class. That is, there are four classes: 34 neonatal with abdominal, cardiovascular, and pulmonary abnormalities and 10 neonatal undiagnosed (premature). The dataset was created by taking 20 images from each of the 44 neonates. To test the performance of the proposed method, six different data separation experiments were conducted. Although the best classification accuracy is 94%, the 89% value obtained in the experiment when the model was tested with image samples of babies that had not been used in training the model is more significant for the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data and materials used in the study are accessible.

Code availability

The codes used in the study are accessible.

References

  1. Abbas AK, Leonhardt S (2008) Neonatal IR-thermography pattern clustering based on ICA Algorithm. Paper Presented at the Color Image Processing Workshop, Aachen, Germany, October, 2008

  2. Abbas AK, Heimann K, Blazek V, Orlikowsky T, Leonhardt S (2012) Neonatal infrared thermography imaging: analysis of heat flux during different clinical scenarios. Infrared Phys Technol 55(6):538–548. https://doi.org/10.1016/j.infrared.2012.07.001

    Article  Google Scholar 

  3. Alan B, Nalbantgil S (2010) Genetic, cellular and molecular mechanisms of pulmonary arterial hypertension/Pulmoner arteriyel hipertansiyonda genetik, hucresel ve molekuler mekanizmalar. The Anatolian Journal of Cardiology 10(1):9–19

    Article  Google Scholar 

  4. Amalu W, Hobbins WB, Head JF, Elliott RL (2006) Infrared imaging of the breast - an overview. The Biomedical Engineering Handbook, 3rd ed., Medical Devices and Systems. CRC Press, Baton Rouge

  5. Apiliogullari B, Sunam GS, Ceran S, Koc H (2011) Evaluation of neonatal pneumothorax. J Int Med Res 39(6):2436–2440. https://doi.org/10.1177/147323001103900645

    Article  Google Scholar 

  6. Apgar V (2015) A proposal for a new method of evaluation of the newborn infant. Originally published in July 1953, volume 32, pages 250–259. Anesthesia and Analgesia 120(5):1056–1059. https://doi.org/10.1213/ANE.0b013e31829bdc5c

  7. Arora N, Martins D, Ruggerio D, Tousimis E, Swistel A, Osborne M, Simmons R (2008) Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg 196(4):523–526. https://doi.org/10.1016/j.amjsurg.2008.06.015

    Article  Google Scholar 

  8. Bach V, Delanaud S, Barcat L, Bodin E, Tourneux P, Libert JP (2019) Distal skin vasodilation in sleep preparedness, and its impact on thermal status in preterm neonates. Sleep Med 60:26–30. https://doi.org/10.1016/j.sleep.2018.12.026

    Article  Google Scholar 

  9. Bagavathiappan S, Saravanan T, Philip J, Jayakumar T, Raj B, Karunanithi R, Panicker TM, Korath P, Jagadeesan K (2008) Investigation of peripheral vascular disorders using thermal imaging. The British Journal of Diabetes & Vascular Disease 8(2):102–104. https://doi.org/10.1177/14746514080080020901

    Article  Google Scholar 

  10. Bahadue FL, Soll R (2012) Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Data System Rev (11). https://doi.org/10.1002/14651858.CD001456.pub2

  11. Barnes RB (1963) Thermography of the Human Body. Science 140(3569):870. https://doi.org/10.1126/science.140.3569.870

    Article  Google Scholar 

  12. Bouzida N, Bendada A, Maldague X (2009) Visualization of body thermoregulation by infrared imaging. J Therm Biol 34(3):120–126. https://doi.org/10.1016/j.jtherbio.2008.11.008

    Article  Google Scholar 

  13. Campbell M (1970) Natural history of coarctation of the aorta. Br Heart J 32(5):633. https://doi.org/10.1136/hrt.32.5.633

    Article  Google Scholar 

  14. Caplan MS, Russell T, Xiao Y, Amer M, Kaup S, Jilling T (2001) Effect of polyunsaturated fatty acid (PUFA) supplementation on intestinal inflammation and necrotizing enterocolitis (NEC) in a neonatal rat model. Pediatr Res 49(5):647–652

    Article  Google Scholar 

  15. Cherkas L, Carter L, Spector T, Howell K, Black C, MacGregor A (2003) Use of thermographic criteria to identify raynaud’s phenomenon in a population setting. J Rheumatol 30(4):720–722

    Google Scholar 

  16. Christidis I, Md H, Rosegger H, Engele H, Kurz R, Kerbl R (2003) Infrared thermography in newborns: The first hour after birth. Gynäkologisch-geburtshilfliche Rundschau 43(1):31–35. https://doi.org/10.1159/000067168

  17. Clark RP, Stothers JK (1980) Neonatal skin temperature distribution using infra-red colour thermography. J Physiol 302(1):323–333. https://doi.org/10.1113/jphysiol.1980.sp013245

    Article  Google Scholar 

  18. Cosh JA, Ring EFJ (1970) Thermography and rheumatology. Rheumatology 10(7):342–348. https://doi.org/10.1093/rheumatology/10.7.342

    Article  Google Scholar 

  19. Dail R, Guenther B, Rice H (2011) Thermoregulation and thermography in neonatal physiology and disease. Biol Res Nurs 13(3):274–282. https://doi.org/10.1177/1099800411403467

    Article  Google Scholar 

  20. Dalla Vecchia LK, Grosfeld JL, West KW, Rescorla FJ, Scherer LR, Engum SA (1998) Intestinal atresia and stenosis: A 25-year experience with 277 cases. Arch Surg 133(5):490–497. https://doi.org/10.1001/archsurg.133.5.490

    Article  Google Scholar 

  21. Frize M, Nur R, Bariciak E, Herry C (2013) Infrared imaging and classification of neonates with necrotising enterocolitis. In: Long M (ed) World Congress on Medical Physics and Biomedical Engineering Beijing, China, Berlin, Heidelberg, Springer Berlin Heidelberg 1309–1312

  22. Heimann K, Jergus K, Abbas AK, Heussen N, Leonhardt S, Orlikowsky T (2013) Infrared thermography for detailed registration of thermoregulation in premature infants J Perinat Med 1–8. https://doi.org/10.1515/jpm-2012-0239

  23. Herry C, Frize M, Bariciak E (2012) Assessment of abdominal skin temperature change in premature newborns with nec compared to healthy controls. 5th European Conference of the International Federation for Medical and Biological Engineering 37:191–194. https://doi.org/10.1007/978-3-642-23508-5_51

  24. Hug L, Alexander M, You D, Alkema L (2019) National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: A systematic analysis. Lancet Glob Health 7(6):710–720. https://doi.org/10.1016/S2214-109X(19)30163-9

    Article  Google Scholar 

  25. Infared thermography - A historical perspective (2020) http://www.omega.com/literature/transactions/volume1/historical3.html. Omega Engineering. http://www.omega.com/literature/transactions/volume1/historical3.html. Accessed 04.12.2020

  26. Jones BF (1998) A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 17(6):1019–1027. https://doi.org/10.1109/42.746635

    Article  Google Scholar 

  27. Knobel-Dail RB, Holditch-Davis D, Sloane R, Guenther BD, Katz LM (2017) Body temperature in premature infants during the first week of life: Exploration using infrared thermal imaging. J Therm Biol 69:118–123. https://doi.org/10.1016/j.jtherbio.2017.06.005

    Article  Google Scholar 

  28. Knobel RB, Guenther BD, Rice HE (2011) Thermoregulation and thermography in neonatal physiology and disease. Biol Res Nurs 13(3):274–282. https://doi.org/10.1177/1099800411403467

    Article  Google Scholar 

  29. Konak M, Sert A, Gündüz M, Soylu H, Uygun SS (2019) Evaluation of congenital anomalies accompanying to gastrointestinal system surgical pathologies. Cukurova Medical Journal 44(2):425–430

    Article  Google Scholar 

  30. Kontos M, Wilson R, Fentiman I (2011) Digital infrared thermal imaging (DITI) of breast lesions: Sensitivity and specificity of detection of primary breast cancers. Clin Radiol 66(6):536–539. https://doi.org/10.1016/j.crad.2011.01.009

    Article  Google Scholar 

  31. Kurath-Koller S, Litscher G, Gross A, Freidl T, Koestenberger M, Urlesberger B, Raith W (2015) Changes of locoregional skin temperature in neonates undergoing laser needle acupuncture at the acupuncture point large intestine 4. Evidence-Based Complement Alter Med 2015:1–6. https://doi.org/10.1155/2015/571857

    Article  Google Scholar 

  32. Lahiri BB, Bagavathiappan S, Reshmi PR, Philip J, Jayakumar T, Raj B (2012) Quantification of defects in composites and rubber materials using active thermography. Infrared Phys Technol 55(2):191–199. https://doi.org/10.1016/j.infrared.2012.01.001

    Article  Google Scholar 

  33. van Lennep M, Singendonk MMJ, Dall’Oglio L, Gottrand F, Krishnan U, Terheggen-Lagro SWJ, Omari TI, Benninga MA, van Wijk MP, (2019) Oesophageal atresia. Nat Rev Dis Primers 5(1):26. https://doi.org/10.1038/s41572-019-0077-0

    Article  Google Scholar 

  34. Liu J, Wang Y, Fu W, Yang CS, Huang JJ (2014) Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine 93(27). https://doi.org/10.1097/MD.0000000000000197

  35. Maldague XP (2001) Theory and practice of infrared technology for nondestructive testing, first ed. Wiley Series in Microwave and Optical Engineering, vol 1. New York, USA

  36. Modest MF (2003) Radiative heat transfer, 2nd edn. Academic Press, California, USA

    MATH  Google Scholar 

  37. Mosalli R, Alfaleh K, Paes B (2009) Role of prophylactic surgical ligation of patent ductus arteriosus in extremely low birth weight infants: Systematic review and implications for clinical practice. Ann Pediatr Cardiol 2(2):120–126. https://doi.org/10.4103/0974-2069.58313

    Article  Google Scholar 

  38. Newborn death and illness (2011) https://www.who.int/pmnch/media/press_materials/fs/fs_newborndealth_illness/en/. World Health Organization. Accessed 05.05.2020

  39. Ng W, Ng E, Tan Y (2009) Qualitative study of sexual functioning in couples with erectile dysfunction prospective evaluation of the thermography diagnostic system. J Reprod Med 54(11–12):698–705

    Google Scholar 

  40. Nur R (2014) Identification of thermal abnormalities by analysis of abdominal infrared thermal images of neonatal patients. PhD Thesis. Carleton University

  41. Offit PA, Quarles J, Gerber MA, Hackett CJ, Marcuse EK, Kollman TR, Gellin BG, Landry S (2002) Addressing parents’ concerns: Do multiple vaccines overwhelm or weaken the infant’s immune system? Pediatrics 109(1):124. https://doi.org/10.1542/peds.109.1.124

    Article  Google Scholar 

  42. Ornek AH, Ceylan M (2018) Determination of correct approaches in evaluation of thermograms. In: Ursi-Turkey IX. Scientific Congress, Konya

  43. Ornek A, Ceylan M, Ervural S (2019) Health status detection of neonates using infrared thermography and deep convolutional neural networks. Infrared Phys Technol 103:103044. https://doi.org/10.1016/j.infrared.2019.103044

    Article  Google Scholar 

  44. Oya A, Asakura H, Koshino T, Araki T (1997) Thermographic demonstration of nonshivering thermogenesis in human newborns after birth: Its relation to umbilical gases. J Perinat Med 25(5):447–454. https://doi.org/10.1515/jpme.1997.25.5.447

    Article  Google Scholar 

  45. Pomerance JJ, Lieberman RL, Ukrainski CT (1977) Neonatal thermography. Pediatrics 59(3):345

    Article  Google Scholar 

  46. Rasor JS, Zlotta AR, Edwards SD, Schulman CC (1993) Transurethral needle ablation (TUNA): Thermal gradient mapping and comparison of lesion size in a tissue model and in patients with benign prostatic hyperplasia. Eur Urol 24:411–414. https://doi.org/10.1159/000474339

    Article  Google Scholar 

  47. Rice HE, Hollingsworth C, Bradsher E, Danko ME, Crosby SM, Goldberg RN, Tanaka D, Dail R (2010) Infrared thermal imaging (thermography) of the abdomen in extremely low birthweight infants. J Surg Res 1(2):61–122

    Google Scholar 

  48. Rondó PHC, Ferreira RF, Nogueira F, Ribeiro MCN, Lobert H, Artes R (2003) Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. Eur J Clin Nutr 57(2):266–272. https://doi.org/10.1038/sj.ejcn.1601526

    Article  Google Scholar 

  49. Savaşci D, Ceylan M (2018) Thermal image analysis for neonatal intensive care units (First evaluation results). 26th Signal Processing and Communications Applications Conference (SIU), 2–5 May 2018. 1–4. https://doi.org/10.1109/SIU.2018.8404831

  50. Savasci D, Ornek AH, Ervural S, Ceylan M, Konak M, Soylu H (2019) Chapter 1 - Classification of unhealthy and healthy neonates in neonatal intensive care units using medical thermography processing and artificial neural network. In: Dey N (ed) Classification Techniques for Medical Image Analysis and Computer Aided Diagnosis. Academic Press, 1–29. https://doi.org/10.1016/B978-0-12-818004-4.00001-7

  51. Saxena A, Willital G (2008) Infrared thermography: Experience from a decade of pediatric imaging. Eur J Pediatr 167(7):757–764. https://doi.org/10.1007/s00431-007-0583-z

    Article  Google Scholar 

  52. Sherman R, Woerman A, Karstetter K (1996) Comparative effectiveness of videothermography, contact thermography, and infrared beam thermography for scanning relative skin temperature. J Rehabil Res Dev 33:377–386

    Google Scholar 

  53. Shevelev IA (1998) Functional imaging of the brain by infrared radiation (thermoencephaloscopy). Prog Neurobiol 56(3):269–305. https://doi.org/10.1016/S0301-0082(98)00038-0

    Article  Google Scholar 

  54. Taylor AM (2008) Cardiac imaging: MR or CT? Which to use when Pediatric Radiology 38(3):433–438. https://doi.org/10.1007/s00247-008-0843-8

    Article  Google Scholar 

  55. Tchervenkov CI, Jacobs JP, Weinberg PM, Aiello VD, Béland MJ, Colan SD, Elliott MJ, Franklin RCG, Gaynor JW, Krogmann ON, Kurosawa H, Maruszewski B, Stellin G (2006) The nomenclature, definition and classification of hypoplastic left heart syndrome. Cardiol Young 16(4):339–368. https://doi.org/10.1017/S1047951106000291

    Article  Google Scholar 

  56. Tharwat A (2020) Classification assessment methods. Applied Computing and Informatics. https://doi.org/10.1016/j.aci.2018.08.003

    Article  Google Scholar 

  57. Thompson JE, Simpson TL, Caulfield JB (1978) Thermographic tumor detection enhancement using microwave heating. IEEE Trans Microw Theory Tech 26(8):573–580. https://doi.org/10.1109/TMTT.1978.1129441

    Article  Google Scholar 

  58. Topalidou A, Ali N, Sekulic S, Downe S (2019) Thermal imaging applications in neonatal care: a scoping review. BMC Pregnancy Childbirth 19(1):381. https://doi.org/10.1186/s12884-019-2533-y

    Article  Google Scholar 

  59. Vyas HV, Greenberg SB, Krishnamurthy R (2011) MR imaging and CT evaluation of congenital pulmonary vein abnormalities in neonates and infants. Radiographics 32(1):87–98. https://doi.org/10.1148/rg.321105764

    Article  Google Scholar 

  60. Will R, Ring EFJ, Clarke A, Maddison P (1992) Infrared thermography: What is its place in rheumatology in the 1990s? Br J Rheumatol 31(5):337–344. https://doi.org/10.1093/rheumatology/31.5.337

    Article  Google Scholar 

  61. Zhong-Shan D, Jing L (2005) Enhancement of thermal diagnostics on tumors underneath the skin by induced evaporation. IEEE Engineering in Medicine and Biology 27th Annual Conference 17–1–2005. 7525–7528. https://doi.org/10.1109/IEMBS.2005.1616253

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019).

Funding

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, project number: 215E019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saim Ervural.

Ethics declarations

Ethics approval

Approval was obtained from the Ethics Committee of Non-Interventional Clinical Research in Selçuk University, Faculty of Medicine (Number: 2015/16 – Date: 06.01.2015).

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ervural, S., Ceylan, M. Classification of neonatal diseases with limited thermal Image data. Multimed Tools Appl 81, 9247–9275 (2022). https://doi.org/10.1007/s11042-021-11391-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11391-0

Keywords

Navigation