Skip to main content
Log in

Directional local co-occurrence patterns based on Haar-like filters

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Content based image retrieval (CBIR) systems enable a quick retrieval of similar images from a large digital repository. However, the performance of the system is heavily reliant on the feature definition of images. The challenge lies in extracting suitable features that can work across a variety of datasets. In this paper, Haar-like local ternary co-occurrence pattern (HLTCoP) is designed as a feature for image retrieval applications. In HLTCoP, four different Haar-like filters are deployed to capture directional information of the image and two different local neighborhoods are considered to obtain the local patterns around every pixel. Thereafter, co-occurrence between two filtered images is computed to construct the HLTCoP feature. Additionally, color information is extracted using histograms of hue and saturation planes. Image retrieval performance is verified on diversified benchmark datasets, Corel 10k, CMU-PIE and MIT VisTex. Significant improvement is achieved in comparison to the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agarwal M, Singhal A (2019) DoG based local ternary pattern for image retrieval. In Proceedings of International Conference on Signal Processing and Communication, pp 242–245

  2. Agarwal M, Singhal A (2019) Multi-channel local ternary pattern for content-based image retrieval. Pattern Anal Applic 22(4):1585–1596

    Article  MathSciNet  Google Scholar 

  3. Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2018) Local neighborhood intensity pattern-a new texture feature descriptor for image retrieval. Expert Syst Appl 113:100–115

    Article  Google Scholar 

  4. Bella MIT, Vasuki A (2019) An efficient image retrieval framework using fused information feature. Comput Electr Eng 75:46–60

    Article  Google Scholar 

  5. Chakraborty S, Singh SK, Chakraborty P (2018) Local gradient hexa pattern: A descriptor for face recognition and retrieval. IEEE Trans Circuits Syst Video Technol 28(1):171–180

    Article  Google Scholar 

  6. Das P, Neelima A (2020) A robust feature descriptor for biomedical image retrieval. IRBM 623:1–13

    Google Scholar 

  7. de Siqueira FR, Schwartz WR, Pedrini H (2013) Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120:336–345

    Article  Google Scholar 

  8. Dey M, Raman B, Verma M (2016) A novel colour- and texture-based image retrieval technique using multi-resolution local extrema peak valley pattern and RGB colour histogram. Pattern Anal Applic 19(4):1159–1179

    Article  MathSciNet  Google Scholar 

  9. Dubey SR (2019) Face retrieval using frequency decoded local descriptor. Multimed Tools Appl 78:16411–16431

    Article  Google Scholar 

  10. Dubey SR, Mukherjee S (2020) LDOP: Local directional order pattern for robust face retrieval. Multimed Tools Appl 79:6363–6382

    Article  Google Scholar 

  11. Fan K-C, Hung T-Y (2014) A novel local pattern descriptor: Local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(5):2877–2891

    Article  MathSciNet  Google Scholar 

  12. Ghose S, Das A, Bhunia AK et al (2020) Fractional local neighborhood intensity pattern for image retrieval using genetic algorithm. Multimed Tools Appl 79:18527–18552

    Article  Google Scholar 

  13. Heikkilä M, Pietikäinen M, Schmid C (2006) Description of interest regions with center-symmetric local binary patterns. Springer Berlin Heidelberg, pp 58–69

  14. Rao LK, Rohini P, Reddy LP (2019) Local color oppugnant quantized extrema patterns for image retrieval. Multidim Syst Sign Process 30(3):1413–1435

    Article  Google Scholar 

  15. Liu Y, Zhang D, Lu G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40:262–282

    Article  Google Scholar 

  16. Liu G-H, Yang J-Y (2015) Content-based image retrieval using computational visual attention model. Pattern Recogn 48(8):2554–2566

    Article  Google Scholar 

  17. MIT Vision and Modeling Group, Cambridge (2002) Vision Texture. Available: http://vismod.media.mit.edu/pub

  18. Muller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image retrieval systems in medical applications- clinical benefits and future directions. Int J Med Informat 73(1):1–23

    Article  Google Scholar 

  19. Murala S, Maheshwari R, Balasubramanian R (2012) Local tetra patterns: A new feature descriptor for content based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  20. Murala S, Maheshwari RP, Balasubramanian R (2012) Directional local extrema patterns: A new descriptor for content based image retrieval. Int J Multimed Inf Retr 1(3):191–203

    Article  Google Scholar 

  21. Murala S, Wu QMJ (2013) Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing 119:399–412

    Article  Google Scholar 

  22. Murala S, Wu QJ, Balasubramanian R, Maheshwari R (2013) Joint histogram between color and local extrema patterns for object tracking. In Video Surveillance and Transportation Imaging Applications. International Society for Optics and Photonics, SPIE 8663:230–236

  23. Murala S, Wu QMJ (2014) Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE J Biomed Health Inform 18(3):929–938

    Article  Google Scholar 

  24. Murala S, Wu QMJ (2015) Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing 149:1502–1514

    Article  Google Scholar 

  25. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29:51–59

    Article  Google Scholar 

  26. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  27. Peng S, Kim D, Lee S, Lim M (2010) Texture feature extraction on uniformity estimation for local brightness and structure in chest CT images. J Comput Biol Med 40:931–942

    Article  Google Scholar 

  28. Raza A, Nawaz T, Dawood H, Dawood H (2019) Square texton histogram features for image retrieval. Multimed Tools Appl 78(3):2719–2746

    Article  Google Scholar 

  29. Reddy AH, Chandra NS (2015) Local oppugnant color space extrema patterns for content based natural and texture image retrieval. AEU Int J Electron Commun 69(1):290–298

    Article  Google Scholar 

  30. Roy S, Chanda B, Chaudhuri BB et al (2020) Local jet pattern: A robust descriptor for texture classification. Multimed Tools Appl 79:4783–4809

    Article  Google Scholar 

  31. Schmid AMBV (2014) Pattern recognition and signal analysis in medical imaging. Elsevier

  32. Shyu CR, Brodley CE, Kak AC, Kosaka A, Aisen A, Broderick L (1998) Local versus global features for content-based image retrieval. In Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173)

  33. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Article  Google Scholar 

  34. Sorensen L, Shaker SB, de Bruijne M (2010) Quantitative analysis of pulmonary emphysema using local binary patterns. IEEE Trans Med Imaging 29(2):559–569

    Article  Google Scholar 

  35. Sucharitha G, Senapati RK (2020) Biomedical image retrieval by using local directional edge binary patterns and Zernike moments. Multimed Tools Appl 79:1847–1864

    Article  Google Scholar 

  36. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  37. Verma M, Raman B, Murala S (2015) Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing 165:255–269

    Article  Google Scholar 

  38. Verma M, Raman B (2016) Local tri-directional patterns: A new texture feature descriptor for image retrieval. Digital Signal Process 51:62–72

    Article  MathSciNet  Google Scholar 

  39. Verma M, Raman B (2017) Local neighborhood difference pattern: A new feature descriptor for natural and texture image retrieval. Multimed Tools Appl, pp 1–24

  40. Xu Y, Li Z, Yang J, Zhang D (2017) A survey of dictionary learning algorithms for face recognition. IEEE Access 5:8502–8514

    Article  Google Scholar 

  41. Yang W, Zhang X, Li J (2020) A local multiple patterns feature descriptor for face recognition. Neurocomputing 373:109–122

    Article  Google Scholar 

  42. Yao CH, Chen SY (2003) Retrieval of translated, rotated and scaled color textures. Pattern Recogn 36(4):913–929

    Article  Google Scholar 

  43. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  44. Zhang X, Liu W, Dundar M, Badve S, Zhang S (2015) Towards large-scale histopathological image analysis: Hashing-based image retrieval. IEEE Trans Med Imaging 34(2):496–506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Singhal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, M., Singhal, A. Directional local co-occurrence patterns based on Haar-like filters. Multimed Tools Appl 81, 1109–1123 (2022). https://doi.org/10.1007/s11042-021-11361-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11361-6

Keywords

Navigation