Skip to main content
Log in

Area-efficient HEVC core transform using multi-sized and reusable DCT architectures

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents an area-efficient and multi-sized DCT architecture for HEVC application. We exploit the commonality in the arithmetic units to increase the hardware reusability as well as reducing the hardware cost. To do so, the multiplexed-multiple constant multiplication (Mux-MCM) problem is used so that the additions required for different constants are time-multiplexed to reuse the same adders in a unified circuit. We develop two efficient 1D-DCT architectures. The first architecture computes different transform sizes ranging from 4 × 4 to 32 × 32 and consumes the lowest hardware cost amongst the existing DCTs. The second architecture can process any combination of transform sizes and offers two options for designers: (1) The first option provides an area-efficient folded 2-D DCT capable of processing 60 fps of 4 K resolution. (2) The second one, which is based on the unfolded structure, achieves the double throughput and can process 60 fps of 8 K, at the expense of higher area overhead. The synthesis results for 90-nm technology show that the number of arithmetic units of the proposed architectures decreases remarkably as well as yielding around 36% and 67% reduction in area consumption and area-delay-product (ADP), respectively, compared to that of the other architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The software can be accessed online in http://www.spiral.net/hardware/mmcm.html

References

  1. Abdulrahman AK, Ozturk S (2019) A novel hybrid DCT and DWT based robust watermarking algorithm for color images. Multimed Tools Appl 78:17027–17049. https://doi.org/10.1007/s11042-018-7085-z

    Article  Google Scholar 

  2. Ahmed A, Shahid MU, Rehman AU (2012) N point DCT VLSI architecture for emerging HEVC standard, VLSI Design. 2012. doi:https://doi.org/10.1155/2012/752024.

  3. Aksoy L, Flores P, Monteiro J (2014) Optimization of design complexity in time-multiplexed constant multiplications, in: Proceedings -Design, Automation and Test in Europe, DATE, pp. 1–4. doi:https://doi.org/10.7873/DATE2014.313.

  4. Bossen F, Sühring K (2015) Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 1–30. Available: https://hevc.hhi.fraunhofer.de/%0Asvn/svn HEVCSoftware/tags/HM-8.0/.

  5. Brahimi N, Bouden T, Brahimi T, Boubchir L (2020) A novel and efficient 8-point DCT approximation for image compression. Multimed Tools Appl 79:7615–7631. https://doi.org/10.1007/s11042-019-08325-2

    Article  Google Scholar 

  6. Budagavi M, Fuldseth A, Bjontegaard G, Sze V, Sadafale M (2013) Core transform design in the high efficiency video coding (HEVC) Standard. IEEE J Sel Top Sign Proces 7:1029–1041. https://doi.org/10.1109/JSTSP.2013.2270429

    Article  Google Scholar 

  7. Budagavi M, Sze V (2012) Unified forward+inverse transform architecture for HEVC, in: Proceedings - International Conference on Image Processing, ICIP, pp. 209–212. https://doi.org/10.1109/ICIP.2012.6466832.

  8. Chang CW, Hsu HF, Fan CP (2015) High-efficiency multiple 4×4 and 8×8 inverse transform design with a cost-effective unified architecture for multistandard video decoders, in: IEEE Asia-Pacific Conference on Circuits and Systems, Proceedings, APCCAS, pp. 507–510. https://doi.org/10.1109/APCCAS.2014.7032830.

  9. Chang CW, Hsu HF, Fan CP, Bin Wu C, Chang RCH (2016) A Fast Algorithm-Based Cost-Effective and Hardware-Efficient Unified Architecture Design of 4 × 4, 8 × 8, 16 × 16, and 32 × 32 Inverse Core Transforms for HEVC, Journal of Signal Processing Systems. 82:69–89. https://doi.org/10.1007/s11265-015-0982-8.

  10. Chatterjee S, Sarawadekar K (2018) An optimized architecture of HEVC core transform using real-valued DCT coefficients. IEEE Trans Circuits Syst II Express Briefs 65:2052–2056. https://doi.org/10.1109/TCSII.2018.2815532

    Article  Google Scholar 

  11. Chatterjee S, Sarawadekar K (2019) Approximated core transform architectures for HEVC using WHT-based decomposition method. IEEE Trans Circuits Syst I Regul Pap 66:4296–4308. https://doi.org/10.1109/TCSI.2019.2925268

    Article  MathSciNet  MATH  Google Scholar 

  12. Darji AD, Makwana RP (2015) High-performance multiplierless DCT architecture for HEVC, in: 19th International Symposium on VLSI Design and Test, VDAT 2015 - Proceedings, pp. 1–5. https://doi.org/10.1109/ISVDAT.2015.7208051.

  13. Fong CK, Han Q, Cham WK (2017) Recursive integer cosine transform for HEVC and future video coding standards. IEEE Trans Circuits Syst Video Technol 27:326–336. https://doi.org/10.1109/TCSVT.2015.2513664

    Article  Google Scholar 

  14. Fralick SC (1977) A fast computational algorithm for the discrete cosine transform. IEEE Trans Commun 25:1004–1009. https://doi.org/10.1109/TCOM.1977.1093941

    Article  MATH  Google Scholar 

  15. Goebel J, Paim G, Agostini L, Zatt B, Porto M (2016) An HEVC multi-size DCT hardware with constant throughput and supporting heterogeneous CUs, in: Proceedings - IEEE International Symposium on Circuits and Systems, pp. 2202–2205. https://doi.org/10.1109/ISCAS.2016.7539019.

  16. Hassanzadeh A, Shabani A (2015) Low power parallel prefix adder design using two phase adiabatic logic. J Electr Electron Eng 3:181. https://doi.org/10.11648/j.jeee.20150306.11

    Article  Google Scholar 

  17. Hatim A, Belkouch S, Benslimane A, Hassani MM, Sadiki T (2016) Efficient architecture for direct 8 × 8 2D DCT computations with earlier zigzag ordering. Multimedia Tools Appl 75:6121–6141. https://doi.org/10.1007/s11042-015-2562-0

    Article  Google Scholar 

  18. Jridi M, Meher PK (2017) Scalable approximate dct architectures for efficient hevc-compliant video coding. IEEE Trans Circuits Syst Video Technol 27:1815–1825. https://doi.org/10.1109/TCSVT.2016.2556578

    Article  Google Scholar 

  19. Jridi M, Alfalou A, Meher PK (2015) A generalized algorithm and reconfigurable architecture for efficient and scalable orthogonal approximation of DCT. IEEE Trans Circuits Syst I Regul Pap 62:449–457. https://doi.org/10.1109/TCSI.2014.2360763

    Article  Google Scholar 

  20. Kalali E, Mert AC, Hamzaoglu I (2016) A computation and energy reduction technique for HEVC discrete cosine transform. IEEE Trans Consum Electron 62:166–174. https://doi.org/10.1109/TCE.2016.7514716

    Article  Google Scholar 

  21. Lin J, Xingjun W, Xin W, Junyong D, Xingjie H (2017) High performance architecture for unified forward and inverse transform of HEVC. J China Univ Posts Telecommun 24:16–23. https://doi.org/10.1016/S1005-8885(17)60207-3

    Article  Google Scholar 

  22. Malathkar NV, Soni SK (2020) A near lossless and low complexity image compression algorithm based on fixed threshold DPCM for capsule endoscopy. Multimed Tools Appl. https://doi.org/10.1007/s11042-019-08347-w

    Article  Google Scholar 

  23. Masera M, Martina M, Masera G (2017) Adaptive approximated DCT architectures for HEVC. IEEE Trans Circuits Syst Video Technol 27:2714–2725. https://doi.org/10.1109/TCSVT.2016.2595320

    Article  Google Scholar 

  24. Masera M, Masera G, Martina M (2020) An area-efficient variable-size fixed-point DCT architecture for HEVC encoding. IEEE Trans Circuits Syst Video Technol 30:232–242. https://doi.org/10.1109/TCSVT.2018.2886736

    Article  Google Scholar 

  25. Meher PK, Park SY, Mohanty BK, Lim KS, Yeo C (2014) Efficient integer DCT architectures for HEVC. IEEE Trans Circuits Syst Video Technol 24:168–178. https://doi.org/10.1109/TCSVT.2013.2276862

    Article  Google Scholar 

  26. Parhi KK (1999) VLSI Digital Signal Processing Systems: Design and Implementation. John Wiley & Sons

  27. Park JS, Nam WJ, Han SM, Lee S (2012) 2-D large inverse transform (16x16, 32×32) for HEVC (High Efficiency Video Coding). J Semiconductor Technol Sci 12:203–211. https://doi.org/10.5573/JSTS.2012.12.2.203

    Article  Google Scholar 

  28. Park SY, Meher PK (2013) Flexible integer DCT architectures for HEVC, in: Proceedings - IEEE International Symposium on Circuits and Systems, pp. 1376–1379. https://doi.org/10.1109/ISCAS.2013.6572111

  29. Rao KR, Kim DN, Hwang JJ (2014) Video coding standards. Springer, The Netherlands, pp 51–97

    Book  Google Scholar 

  30. Saidi M, Hermassi H, Rhouma R, Belghith S (2017) A new adaptive image steganography scheme based on DCT and chaotic map. Multimed Tools Appl 76:13493–13510. https://doi.org/10.1007/s11042-016-3722-6

    Article  Google Scholar 

  31. Shabani A, Sabri M, Khabbazan B, Timarchi S (2020) Area and Power-Efficient Variable-Sized DCT Architecture for HEVC Using Muxed-MCM Problem, IEEE Transactions on Circuits and Systems I: Regular Papers. 1–10. https://doi.org/10.1109/TCSI.2020.3044248.

  32. Shabani A, Timarchi S (2017) Low-power DCT-based compressor for wireless capsule endoscopy. Signal Process: Image Commun 59:83–95. https://doi.org/10.1016/j.image.2017.03.003

    Article  Google Scholar 

  33. Shabani A, Timarchi S, Mahdavi H (2019) Power and area efficient CORDIC-Based DCT using direct realization of decomposed matrix. Microelectron J 91:11–21. https://doi.org/10.1016/j.mejo.2019.07.008

    Article  Google Scholar 

  34. Singhadia A, Bante P, Chakrabarti I (2019) a novel algorithmic approach for efficient realization of 2-D-DCT architecture for HEVC. IEEE Trans Consum Electron 65:264–273

    Article  Google Scholar 

  35. Sun H, Zhou D, Liu P, Goto S (2014) A low-cost VLSI architecture of multiple-Size IDCT for H 265/HEVC. IEICE Trans Fundamentals of Electron Commun Comput Sci. https://doi.org/10.1587/transfun.E97.A.2467

    Article  Google Scholar 

  36. Sun H, Cheng Z, Gharehbaghi AM, Kimura S, Fujita M (2019) Approximate DCT design for video encoding based on novel truncation scheme. IEEE Trans Circuits Syst I Regul Pap 66:1517–1530. https://doi.org/10.1109/TCSI.2018.2882474

    Article  MathSciNet  MATH  Google Scholar 

  37. Tummeltshammer P, Hoe JC, Puschel M (2007) Time-multiplexed multiple-constant multiplication. IEEE Trans Comput Aided Des Integr Circuits Syst 26:1551–1563

    Article  Google Scholar 

  38. Voronenko Y, Püschel M (2007) Multiplierless multiple constant multiplication. ACM Transactions on Algorithms 3:11--es. https://doi.org/10.1145/1240233.1240234.

  39. Wang K, Chen J, Cao W, Wang Y, Wang L, Tong J (2011) A reconfigurable multi-transform VLSI architecture supporting video codec design. IEEE Trans Circuits Syst II Exp Briefs 58:432–436. https://doi.org/10.1109/TCSII.2011.2158265

    Article  Google Scholar 

  40. Wiegand T, Sullivan GJ, Bjøntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13:560–576. https://doi.org/10.1109/TCSVT.2003.815165

    Article  Google Scholar 

  41. Zhao W, Onoye T, Song T (2013) High-performance multiplierless transform architecture for HEVC, in: Proceedings - IEEE International Symposium on Circuits and Systems: pp. 1668–1671. https://doi.org/10.1109/ISCAS.2013.6572184

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Rastgarpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younesi, R., Rastegar Fatemi, M. & Rastgarpour, M. Area-efficient HEVC core transform using multi-sized and reusable DCT architectures. Multimed Tools Appl 80, 36249–36274 (2021). https://doi.org/10.1007/s11042-021-11357-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-11357-2

Keywords

Navigation